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Abstract
Could we teach AI in brain science spectrum to manoeuvre causation via the specific
identification entailed by data? How should we further appreciate "causal structures"
underneath the data in a complicate learning environment? An environment in which
"generic data relations" are prone to be non-linear, and even impacts from the multiple
unknown factors are persisting. Existing solutions towards the issue—non-linearity
identification with latent confounding—might be either theoretically elusive in formal
representation or notoriously difficult in algorithmic computation. Such motivations
have driven us to a theory-guided and effective causal discovery algorithm. Concretely,
with the existence of multiple latent confounders, we re-analysis the celebrated non-
linear Additive Noise Models, and discovered an identification which specifies how the
varying degrees of latent confounding are essentially raised by "unobserved parents".
Ultimately the identification gives rise to the well-performance algorithm on functional
magnetic resonance imaging (fMRI) brain data, bringing our hope that, in practice,
the intelligent agents seeking for causation are equipped with vigorous counteraction
against the data complexities. Mathematical proof is provided in the supplementary
material [link] and Python implementations are open-source in Github [link].

1 Introduction

Causal discovery, namely to recover data generation mechanism represented (vaguely) by causal
graphs, is an emerging scientific discipline to spot causal significance from the merely observed data.
As for quick starters, we figuratively describe our primary motivation by considering the identification
over a non-linear additive-noise-model denoted as "cause-and-effect" C → E. Obviously, C → E cannot
be methodologically identified, if both of their parent are unobserved (e.g. paC and paE), amounting to
an unobserved common cause. The question is, whether C → E keeps identifiable if only one side of
the parent is unobserved and even triggers the indirected confounding (e.g. C ← paC ← paE → E)?

Figure 1: Intuitions of non-linear causal identification under indirected latent confounding.
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Leveraging the popular methodology [P. Hoyer et al. (2008)][Peters, Janzing, and Schölkopf (2017)],
namely the regression and the independence test, two illustrated examples in Figure (1) imply the
procedure of causal identification after the standard "deconfounding" methodology. The "deconfound-
ing" procedure results in residuals of C and E (denoted as RC and RE in followings) by regressing on
all the hypothetical observed parents respectively (including C and E). Consequently, the statistical
asymmetry, as shown in previous literature, indicates that only if the independence between RE and
C whereas the dependence between RC and E occurring after "deconfounding", could the direction of
"cause-and-effect" C → E keep identifiable.

"Deconfounding" deserves further discussion. In practice, only a subset of variables relative to a rea-
sonable system could be measured, posing significant challenges on distinguishing causal directions in
the circumstance with hidden variables. Specifically, if considering the latent confounding triggered
by unobserved parents pa, the explanation exhibits an intuitive side when we draw comparison with
the methodology in linear circumstances: No matter which latent confounder raised by the unobserved
parents paC or paE , the causal information "flow" alongside the indirected confounding path ending
up between C and E will be "blocked" by one of their observed parents (e.g. C ← paC ← paE → E is
blocked by paC ; C ← paC → paE → E is blocked by paE). Such blocking behaviors entirely "blocks" the
information flow with respect to the confounding path, which means being capable of deconfounding by
linear regression methodologically. This strategy, unfortunately, could not pay off in terms of non-linear
functions, due to the variables’ non-linear interaction compromising the effect of regression (Section 3).

Our work in this paper, however, still endeavour to contribute a leeway for appropriately identify causal
direction from the data that involves non-linearity and latent confounding. Briefly, the conclusion for
the above question suggests that the direction of "cause-and-effect" C → E is able to continuously
keep identifiable, only if the confounding is triggered by the unobserved parent paC rather than paE .
Equipping with the theoretical conclusion, we further proposed a "hybrid" causal discovery method
that will wisely utilize the regression-independence-test methodology to reach the practical efficiency.
Details about the theory and algorithm, along with the experimental results, will be elaborated using
the field-related language in the rest of the main part of the paper. Also see a relatively light discussion
at the end of the article for general ideas from one of the author Xuanzhi Chen.

2 Related Work

Classical causal discovery approaches can be divided into two primary categories: constraint-based and
functional-based. In this section, we will briefly review methods with and without the causal sufficiency.

Conventional constraint-based methods, such as the SGS algorithm and the PC algorithm [Spirtes,
C. N. Glymour, et al. (2000)], resort to the (conditional) independence test among variables to first
identify a skeleton and further determine causal directions by utilizing V-structures and specific rules.
Other methods, such as GES [Chickering (2002)], performs the greedy equivalent search and optimizes
the BIC score of associating Bayesian networks. These methods, however, inevitably suffer a problem-
atic issue of Markov equivalence class (MEC). Over the last decades, the emerging functional-based
methods are on an attempt to assume data generation process based on restricted functional causal
models (FCM). Provided the linear additive models with independent non-Gaussian noise (LiNGAM),
the ICA-LiNGAM [Shimizu, P. O. Hoyer, et al. (2006)] method optimizes the linear causal transfor-
mation based on the independent component analysis(ICA). The Direct-LiNGAM [Shimizu, Inazumi,
et al. (2011)] approach, as a variant of ICA-LiNGAM, unravels a causal order by iteratively identifying
the most exogenous or the most endogenous variables after regression. Beyond the non-Gaussian noise
assumption that entails causation, functional causal models such as ANMs [P. Hoyer et al. (2008)] and
CAMs [Bühlmann, Peters, and Ernest (2014)], implying the non-linearity of specific functional classes,
can as well exhibit causal asymmetric for identification.

Nevertheless, the above methodology is confined to the causal insufficiency, namely the presence of
latent confounders. To alleviate this, constraint-based methods such as the FCI algorithm [Spirtes,
C. N. Glymour, et al. (2000)] introduce the notion of partial ancestral graphs (PAG) for causal iden-
tification with the sophisticated graphical representation, whereas limitations of the MEC issue are
still existing. Functional-based methods attempting to fine-tune the existing basics are similarly fac-
ing the challenges for both linear and non-linear cases. In linear cases, the proposed overcomplete
ICA [Lewicki and Sejnowski (2000)] approach might suffer local optimum; the pairwise LvLiNGAM
[Tashiro et al. (2012)] and Parce-LiNGAM [Tashiro et al. (2014)] approaches demands unacceptable
computational time; recent methods such as MLC-LiNGAM [Chen et al. (2021)] and RCD [Maeda and
Shimizu (2020)] are rely on the linear setting to advance their strength. In terms of non-linear cases,
the application of the ICAN method [Janzing et al. (2012)] is restricted to pairwise variables; the causal
identifiability of the CAM-UV approach [Maeda and Shimizu (2021)] might focus more on avoiding false
causal inference instead of providing deterministic identification statements.
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3 Model, Assumption, and Causal Identification Theory

Let GX denotes as the directed acyclic graphs (DAG) of variables X = {x1, x2, . . . , xd}, with i.i.d. noises
ε = {ε1, ε2, . . . , εd}. Presuming the additive-noise-models (ANMs) [P. Hoyer et al. (2008)], the causal
models < GX , ε,fX > generated by Non-linear functions fX with Multiple Latent Confounders, can
be formalized in this paper—in form of the ANMs generation procedure of following pair xj → xi:

xi :=
∑

xj∈pai

fij(xj) + ξi. (1)

Denoting as Nonlinear-MLC, we specify that the "latent confounding" from "unobserved parents" pa
(observed parents pa analogically) is incorporated to the extensive noises ξi := εi ∪f(pai). Addition-
ally mild assumptions required in this article (Section 4.2) are listed as follows:
A-1 Markov Assumption: Independence yielded by GX is consistent with ones over distributions PX .
A-2 Faithfulness Assumption: Distributions PX faithfully encode independence entailed only by GX .

Traditionally, discovering GX′ over a subset X ′ ⊂X might draw on expunging causal functions’ effects
by linear regression and thus revealing the testable independence noise. But contrasting with linear
combinations, the causal model Nonlinear-MLC by Equation(1) cannot be expanded as:

xi :=
∑

εk∈ε\{εi}

ϕ(εk) + εi. (2)

Composite non-linear functions ϕ := f(f(...)) relative to independent noises cannot be accessible, in the
sense that "composite ANMs" do not hold with embedded latent noises εpa, leading to the infeasibility to
expunge non-linear effects from within. (e.g. "endogenous dependence εpa" will compromise regression)

Aiming at mitigating this issue, we proposed Lemma 1, arguing as the latent additive noise models
( L-ANMs ), to stipulate a novel i.i.d. identifiable condition for the Nonlinear-MLC models:
Lemma 1. Assuming data generation procedures are consistent with Equation (1), the pairwise cause-
and-effect C → E among (multiple unobserved) pairs C∗ → E is identifiable if and only if

(ξE ⊥⊥ C) ∧ (ξE := εE ∪ f(C∗)) (3)
is satisfied, where other multiple unobserved causes C∗ are denoted as C∗ := C\C = paE .

Contributions of the L-ANMs Lemma are three-fold: (i) It is targeted for non-linearity, not necessarily
a compulsion for linear cases. (ii) A succintly deterministic identification condition, compared to notions
in previous work (e.g. "C-ANMs" [Cai et al. (2019)] or "CAM-UV" [Maeda and Shimizu (2021)]). (iii)
Akin to the well-known identification condition ((εE ⊥⊥ C) ∧ (εC ⊥⊥ E | C)) by Independence Causal
Mechanism (ICM) [Peters, Janzing, and Schölkopf (2017)], Lemma L-ANMs permits (ξC ⊥̸⊥ E | C),
which is essentially how we characterize the latent confounding by unobserved parents in this paper.

Figure 2: Graphical intuitions of Lemma 1 (Latent-ANMs) with the symbol "o-o" characterizing the
uncertain causal directions "->" or "<-". (a) The structure involving relations between interested cause
C and multiple unobserved causes C∗ given the effect E. (b) The general Nonlinear-MLC model with
respect to the structure in (a), where U summarizes the rest of observed variables.

Diving deeper in algorithm design (Section 4), L-ANM inspires a seeking for empirical regressor Ri

to discover independence between ξi and xj (similar to the binary case ξE and C shown in Lemma 1).
A scratch of proof with slight algebra in Equation(1) shows:

xi −
∑

xh∈pai\{xj}

fih(xh)︸ ︷︷ ︸
Ri

= f(xj) +

 ∑
xk∈pai

fik(xk) + εi


︸ ︷︷ ︸

ξi

. (4)

To summarize, the essence of L-ANMs Lemma reveals a condition that prevents ANMs from violations,
thus generalizing the ANMs identification into an extensive range with presence of latent confounders.
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4 A Theory-based Novel Algorithm for Causal Discovery

4.1 Recognize the Graphical Pattern: Maximal Cliques

Existing algorithms [Maeda and Shimizu (2021)][Tashiro et al. (2014)] may stuck in undetermined
dependence of variable subsets. The "undetermined dependence" within variable subsets, from the
graphical perspective, might indicate the "undirected connection" within maximal cliques M. One
might also notice that, in the view of algorithms amidst their computing memory, the undetermined
parent-relations amounts to multiple unobserved parents. Thus lining up with Lemma 1, fully
depending structures in M (including C and E) limit the anticipant independence between C∗ and C,
leading to the following corollary drawing on empirical regressor R to counteract that dependence.

Figure 3: A toy graphical structure, namelyMC,E = {C,E,U}, illustrates how to determine non-linear
identifiability under latent confounding (paC or paE) by applying Corollary 1 in cases (a), (b), and (c).

Corollary 1. Assuming data generation procedures are consistent with Equation (1), the pairwise cause-
and-effect C → E over a maximal cliqueM is identifiable if and only if

(E −RE(M∗) ⊥⊥ C) ∧ (M∗ :=MC,E\ {E}) (5)
is satisfied, whereMC,E represents all observed variables including C and E within a maximal clique.

4.2 Incorporate the Two-Steps Framework of Hybrid Methodology

We further apply the novel identification (implies by Corollary 1) on the maximal cliques M partitioned
over causal skeleton SX′ , which stands on the basic ground provided by the PC algorithm [Spirtes, C. N.
Glymour, et al. (2000)], along with the algorithm’s identification guaranteed by Lemma 2.
Lemma 2. Suppose that assumptions A1 and A2 hold, every true adjacency pair of variables xi and xj

in GX is in accord with the estimated adjacency pair in causal skeleton SX′ of GX′ using PC algorithm.

Figure 4: A two-steps method with the spurious edges detecting latent confounders [Chen et al. (2021)].

Algorithm 1 Nonlinear-MLC Algorithm
Require: Data X′ = {x1, ..., xm}(m < d), significant level α
Ensure: Estimated causal graph ˆGX′

1: ˆSX′ , ˆGX′ ← stage1CausalDiscovery(X′, α), search← True;
2: while search do
3: ˆGX′ ← stage2CausalDiscovery(X′, α, M( ˆSX′), ˆGX′), search← False;
4: if determinedNewDirections( ˆGX′) then
5: search← True;
6: end if
7: end while
8: return( ˆGX′)
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5 Experiments

We use the following causal discovery algorithms as the baseline methods: PC [Spirtes, C. N. Glymour,
et al. (2000)], FCI [Spirtes and C. Glymour (1991)], RESIT [Peters, Mooij, et al. (2014)], and CAM-UV
[Maeda and Shimizu (2021)]. PC is a constraint-based approach assuming causal sufficiency. Accord-
ingly, FCI servers as an extension of PC algorithm, applying to causal inference with latent confounders.
RESIT and CAM-UV are categorized to functional-based approaches. As a variant of DirectLiNGAM
[Shimizu, Inazumi, et al. (2011)], RESIT assumes that non-linear additive models hold as for the data
generation without presence of latent confounders. CAM-UV [Maeda and Shimizu (2021)], however,
further assumes the existence of (general) unobserved variables, tending to avoid the incorrect causal
inference. The usages of the baseline methods stated above refer to the python package causal-learn3.
We use precision, recall, and F1 score as the evaluation indicators for the estimated causal graphs
reconstructed by different algorithms. Amidst the experiment, notice that we only extracted directed
edges from the adjacency matrix or directly obtained causal pairs for calculating the indicators.

5.1 Performance on Functional Magnetic Resonance Imaging (fMRI) Data

We tested the Nonlinear-MLC algorithm for the simple application in related fields of neuroscience,
performing causal discovery to established fMRI brain dataset4 that is on the mathematical basics
of (non-linear) dynamic causal models [Friston, Harrison, and Penny (2003)]. We selected the fMRI-
dataset (sim3) that entails causal interactions among 15 distinct spatial regions (Regions of Interest,
ROI), and characterizes the temporal signals sampled from individuals. We further reconstructed the
non-temporal dataset via random sampling by giving a proper width-fixed time window. The goal is to
discovery the causal structures (e.g. the mapping networks based on brain functions) over brain regions
(denoted as the variable Xi) under the circumstances with omitted variables 5 (shown in Figure 56)

Figure 5: Illustration of the causal structure (with latent confounders) with respect to ROI based on
fMRI data. Omitted regions (namely the latent confounder) are marked as red color.

Specifically, we first prioritized an increasing sequence of variables associating with brain regions (e.g.
x0, x5, and x10) as latent confounders by omitting them from original dataset. Then the dataset was
processed by sampling with a size of 1000 from randomly selective 5 individuals, given width-fixed time
windows with length of 200. Ultimately, we performed causal discovery approaches to the dataset.

Figure 6: Performance evaluations (precision, recall, f1-score) on fMRI-dataset (sim3).
3https://causal-learn.readthedocs.io/en/latest/
4https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
5Experiment settings virtually mirror the previous work [Maeda and Shimizu (2021)], whereas we primarily

consider high dimension causal inference with the variable omitting that renders the latent confounders (instead
of the latent intermediates).

6Figurative descriptions in Figure 5 are partially referred to the course Introduction to FSL (Andrew Jahn) and
the literature [Minati et al. (2015)]
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Notice that the relative simplicity of causal structures implied by fMRI data reduces Nonlinear-MLC’s
advanced maximal-clique-based causal inference (described in Section 4.1) into the directed pairwise
causal inference. Meanwhile, the CAM-UV algorithm might infer more hypothetical causal connections
(including the redundant connections) without the foundation of the causal skeleton, which rendered
its performance with marginally higher recalls but lower precision than the Nonlinear-MLC algorithm.
Despite of the well-perform precision by the FCI algorithm, it actually determined a small fraction of
causal directions that contributes little to the recall (illustrated in Figure 6).

Hence, we conclude that performance of the Nonlinear-MLC algorithm inclines to a slight advantage
in the comprehensive F1 score with practicably lower computational time (exhibited in Fig 6).

5.2 Performance on Simulated Causal Models (Non-linear MLC) Data

We simulated the data generation via first obtained a random DAG in light of the Erdős–Rényi model
[Erdős, Rényi, et al. (1960)]. According to a omitted number that specified latent confounders, we then
determined the unobserved variables and (evenly) distributed their range of confounding across all
observed variables. Provided a topological order converted by the DAG, we consequently simulated
each observed variable xi (in the topological order) by summarizing the effects of both its observed
parents pai and unobserved parents pai, along with an externally random noise term εi, namely

xi = x′
i/std(x

′
i), x′

i :=
∑

xj∈pai

ρ1 · fij(xj) +
∑

xk∈pai

ρ2 · fik(xk) + εi, (6)

where the symbol std(·) denotes the standard deviation of x′
i. The numerical coefficients ρ1 and ρ2

were randomly taken from Uniform(0.3, 0.5) and Uniform(0.6, 0.8) respectively; the types of the non-
linear functions f were randomly chose from {f(·) | sin(·), √·, (·)3}; the external noise εi was randomly
sampled from Uniform(-10, 10). Since the assumption A-2 (in Section 3) is vulnerably to be violated in
practice, we must highlight herein that we have heuristically filtered the groups of simulated data
that led to low recall of causal skeletons by applying the PC algorithm beforehand (since a low skeleton
recall implies weak encodings of (conditional) independence entailed by GX and further violates A-2).

Fixing the sample size n of 1000 and the dimension d (of observed variables) of 10, we test the average
perform of the Nonlinear-MLC algorithm by running 50 times of experiments with the variation of
omitted variables numbers (from 0 to 3). Plus, we further tested the algorithm’s sensitivity in regard
of two cases: n ∈ [500, 1000, 1500] and d ∈ [5, 10, 15]. We set the same ratio of latent confounder as 0.2,
and fixed d = 10 and n = 1000 respectively for the two cases. (Figuratively shown in Figure 7; Table 1)

Figure 7: Performance evaluations on simulated data with different numbers of latent confounders.

Table 1: Sensitivity as to samples and dimensions, along with associating computational cost.

Algorithm
F1 Score Computational Time

Sample Size Dimension Number of Latent Confounder
500 1000 1500 5 10 15 0 1 2 3

PC 0.347 0.385 0.421 0.322 0.385 0.372 0.05 0.07 0.05 0.01
FCI 0.217 0.261 0.473 0.304 0.261 0.197 0.18 0.21 0.17 0.17

RESIT 0.152 0.169 0.174 0.277 0.169 0.124 29.78 29.73 29.82 29.86
CAMUV 0.265 0.374 0.586 0.625 0.374 0.419 14.7 17.59 15.14 15.16

NonlinearMLC 0.623 0.661 0.735 0.851 0.661 0.627 9.42 10.62 11.26 11.67

Figure 5.2 illustrates the average performance of Nonlinear-MLC compared with baseline methods.
Except for the case of causal sufficiency—precision of our method is slightly lower than the CAM-UV
algorithm—Nonlinear-MLC outperforms others in presence of latent confounders. Table 5.2 further
demonstrates that our method is robust against the changes as to different sample sizes and dimensions.
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6 Discussion

Since the schedule of publishing this paper was eventually cancelled, the light discussions in this section
were additionally listed by one of the author Xuanzhi Chen. The following question-oriented discussion
will specify supplemental perspectives as for this paper, by reviewing some of the equally important
ideas (from Xuanzhi’s point of view) during his journey of finishing the work.

• Does the work in this paper truly tackle the issue of "Multiple Latent Confounders"?

No quite, I have to admit. Initially I just wanted to "extend" the repertoire of our previous work
MLC-LiNGAM [Chen et al. (2021)], an causal discovery algorithm serves in a linear spectrum,
by utilizing the conventional (non-linear) additive noise models (ANMs). To this end, I kept
that abbreviation "MLC" (Multiple Latent Confounders) for echoing the series of our work.

However, this might cause a slight exaggeration for the Nonlinear-MLC algorithm in this paper
because I gradually found that non-linearity in causal inference is tricky than what I have
imagined. The "idea of extension" did not fully make sense due to the fact that the (linear)
causal discovery strategies, which has paid off in MLC-LiNGAM (e.g. up-down and bottom-up
search), cannot just directly fit for NonlinearMLC.

Technically speaking, in presence of multiple latent confounders, a LiNGAM (Linear Non-
Gaussian Additive Model) would tend to hold after linear regression, whereas an ANM (non-
linear Additive Noise Model) is distortion-prone via "inadequate non-linear regression"—non-
linear regression is susceptible to multiple latent confounders. In essence, this therein results
in the marjor difference between the MLC-LiNGAM and the Nonlinear-MLC algorithm.

Thus, it is partially the reason why I spent the time than anticipation on this paper. With
the help from my advisor Wei Chen, fortunately, we alternatively discovered the Latent-ANMs
lemma (in Section 3). Despite the lemma primarily functions as a "fine-grained" theory, it might
be simper and more distinctive in articulating the non-linear identification, which describes the
relations between the cause-variable and the other unobserved patents of the effect-variable.

• What is the limitation of the Nonlinear-MLC algorithm?

Though I have featured Nonlinear-MLC with emphasis on its theory-guided advantages, such
as "maximal clique patterns" and "hybrid methodology", I would like to say the meaning of the
algorithm is more about the practicable causal discovery program on its own.

The strategy of maximal-clique-based causal inference, for instance, do strength the empirical
performance of Nonlinear-MLC, whereas the algorithm in practice (according to my observation
while developing the program) does not necessarily obey this "fine-grained" theoretical strate-
gies all the way (e.g. mostly a maximal clique includes the vertexes that are not more than
3, excluding the necessity for comprehensive analysis given such a simple structure). On top
of that, restricted in a established hybrid-based framework, Nonlinear-MLC might sometimes
become susceptible to the so-called cascading errors—an incorrect estimated causal skeleton
(in the first stage of the algorithm) can compromise the subsequent non-linear regression and
independence tests.

Bottomline, I think the ideas of Nonlinear-MLC, good or bad, would largely depend on the feed-
back from users in different fields who want to give the non-linear causal inference a shot. By
applying Nonlinear-MLC, I wish the users more or less are able to get a rough understanding
about the causation with respect to the field-related data they are interested in.

• Would the algorithm be extended to apply for time series data in the future work?

No, and I would not recommend that follow-up work is done to serve as a "time-series version"
of Nonlinear-MLC, though it might be a good way to quickly grasp the idea and yield another
paper for utilitarian purpose. Temporal causal discovery has recently been a popular topic, but
I wish we could dig deeper instead of directly launching a parallel extension.
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