SUPPLEMENTARY MATERIAL TO:

"Non-linear Causal Discovery for Additive Noise Model with Multiple Latent Confounders"

Xuanzhi Chen School of Computer Science Guangdong University of Technology Guangzhou, China xuanzhichen.42@gmail.com

A Proofs

The appendix provides the proof of Lemma 1¹ and Corollary 1 (identifiable theory of *Latent-ANMs*).

Data Generation Procedure (Nonlinear-MLC Causal Models):

Denote $\mathcal{G}_{\mathbf{X}}$ with $\mathbf{X} = \{x_1, x_2, \dots, x_d\}$ as directed acyclic graphs (DAG) and $\boldsymbol{\varepsilon} = \{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_d\}$ as i.i.d. latent noises, the generation of pairwise additive-noise-models (ANMs) $x_j \rightarrow x_i$ characterized by observed parents (pa) and unobserved parents (\overline{pa}) can be formalized as:

$$x_i := \sum_{x_j \in \boldsymbol{pa}_i} f_{ij}(x_j) + \xi_i, \tag{1}$$

(2)

where $f(\cdot)$ denotes the third order differentiable non-linear functions that are in accord with the ANMs assumption, and an extensively latent noise $\xi_i := \varepsilon_i \cup f(\overline{pa}_i) = \varepsilon_i + \sum_{\ell_k \in \overline{pa}_i} f_{ik}(\ell_k)$ is introduced into Equation(1) for modelling the multiple latent confounding from the multiple unobserved parents \overline{pa} .

Lemma 1. Assuming data generation procedures are consistent with Equation (1), the pairwise causeand-effect $C \to E$ among (**multiple unobserved**) pairs $C^* \to E$ is identifiable if and only if

$$(\xi_E \perp\!\!\!\perp C) \land (\xi_E := \varepsilon_E \cup \boldsymbol{f}(\boldsymbol{C}^*))$$

is satisfied, where other multiple unobserved causes C^* are denoted as $C^* := C \setminus C = \overline{pa}_E$.

Corollary 1. Assuming data generation procedures are consistent with Equation (1), the pairwise causeand-effect $C \rightarrow E$ over a maximal clique \mathcal{M} is identifiable if and only if

$$E - \mathcal{R}_E(\mathcal{M}^*) \perp C) \land (\mathcal{M}^* := \mathcal{M}_{C,E} \setminus \{E\})$$
(3)

is satisfied, where $\mathcal{M}_{C,E}$ represents all observed variables including C and E within a maximal clique.

A scratch of proofs is shown as the following. Lemma 1 is proved by incorporating multiple latent confounding into structure causal models (SCMs), consisting with the ANMs proof framework [Hoyer et al. (2008)] — restricting non-linear function class over differential equations to exhibit asymmetry.

On the basic of Lemma 1, proofs of Corollary 1 sheds light on their mutual equivalences, given the premises in which leveraging maximal-clique-patterns has properly expunged the confounding effect.

¹Identifiability guaranteed by Lemma 2 (Section 4.2) has been proven in the literature [Spirtes et al. (2000)].

A.1 Proof of Lemma 1

We proved Lemma 1 by transferring variable descriptions beforehand — from the intuitive pairwise cause-and-effect $C \rightarrow E$ into the standard structure causal models (SCMs) with the variables $X = \{x_1, x_2, \ldots, x_d\}$. The corresponding Lemma relative to SCMs is stated as the following.

Lemma 1. (SCMs): Assuming data generation procedures are consistent with Equation (1), the pairwise causal dependence between the effect-variable x_i and one of the associating cause-variables $x_j \in pa_i$ is identifiable if and only if

$$\{\xi_i \perp x_j\} \land \{\xi_i := \varepsilon_i + \sum_{\ell_k \in \overline{pa}_i} f_{ik}(\ell_k)\}$$
(4)

is satisfied, where ξ_i is denoted as an extensive noise (e.g. compared to the original noise ε_i that has satisfied $\varepsilon_i \perp x_j$). The extensive noise ξ_i further models the multiple latent confounding from the multiple unobserved parents \overline{pa}_i .

Taking the potential latent confounders $\ell_k \in \overline{pa}_i$ into consideration, Lemma 1 (SCMs) provides an independent condition to identify the unambiguous causal directions $\{x_j \to x_i \mid x_j \in pa_i\}$. Next, suppose we use $x_j \to x_i$ ($x_j = pa_i$) to represent any of the identifiable pairs satisfying Lemma 1 (SCMs).

Notice that the proof of Lemma 1 (SCMs) is equal to prove that the *Nonlinear-MLC* causal model only holds in the causal direction $x_j \rightarrow x_i$. According to Equation (1), we further formalize the generation procedure as to a correct causal model \mathcal{M}_1 in the following

$$\mathcal{M}_1: x_i := f_{ij}(x_j) + \mathcal{F}_i(\ell_i) + \varepsilon_i.$$
(5)

Where $\mathcal{F}_i(\ell_i) = \sum_{\ell_k \in \overline{pa}_i} f_{ik}(\ell_k)$. Without loss of generality, we slightly distinguish the reversed nonlinear function and the latent noise, in the sense that an inversed (incorrect) causal model \mathcal{M}_2 satisfies

$$\mathcal{M}_2: x_j := \tilde{f}_{ji}(x_i) + \tilde{\mathcal{F}}_j(\ell_j) + \tilde{\varepsilon}_j.$$
(6)

We factorize the marginal distribution (with multiple unobserved parents) entailed by both models:

$$p(x_i, x_j) = \sum_{\ell} p(x_i, x_j \mid \ell) \ p(\ell) = \begin{cases} \sum_{\ell_i} p(x_i \mid x_j, \ell, \mathcal{M}_1) \ p(x_j \mid \ell, \mathcal{M}_1) \ p(\ell \mid \mathcal{M}_1), \\ \sum_{\ell_j} p(x_j \mid x_i, \ell, \mathcal{M}_2) \ p(x_i \mid \ell, \mathcal{M}_2) \ p(\ell \mid \mathcal{M}_2). \end{cases}$$
(7)

Notice that the independent noise ε is generalized into (the possibly dependence) ξ , along with the independence $\xi_i \perp x_j$ entailed by the identifiable causal model \mathcal{M}_1 :

$$\xi = \mathcal{F}(\boldsymbol{\ell}) + \varepsilon = \sum_{\ell_k \in \overline{\boldsymbol{p}\boldsymbol{a}}} f_k(\ell_k) + \varepsilon, \quad \xi_i \perp x_j.$$
(8)

Given likelihood functions $\mathcal{L} = \log p(\cdot)$ and injective relations between ξ_i and x_j ($\tilde{\varepsilon}_j$ and x_i), combining Equations (7) and (8) yields

$$\mathcal{L}(\mathcal{M}) = \begin{cases} \mathcal{L}_{\xi_i}(x_i - f_{ij}(x_j)) + \mathcal{L}_{x_j}(x_j), & \mathcal{M} = \mathcal{M}_1, \\ \mathcal{L}_{\tilde{\varepsilon_j}}\left(x_j - \tilde{f}_{ji}(x_i) - \tilde{\mathcal{F}}_{ji}(\ell)\right) + \mathcal{L}_{x_i}(x_i), & \mathcal{M} = \mathcal{M}_2. \end{cases}$$
(9)

Additionally, we herein **emphasize** that the strict independence $\xi_i \perp x_j$ ensures the expression of $\mathcal{L}(\mathcal{M} = \mathcal{M}_1)$ in Equation (9). In other words, the conditional independence (between ξ_i and x_j) is insufficient to yield that expression in form of regression-based replacement (e.g. replace $\mathcal{L}_{x_i|x_j, \ell_i}(x_i)$ in eq.(7) by $\mathcal{L}_{\xi_i}(x_i - f_{ij}(x_j))$ in eq.(9)). **The reason** is given by the non-linearity, which implies that the variables' non-linear interaction, compared with linearity, will compromise the effect of regression (**recall** the Introduction and Section 3 in the paper).

Based on the formalism shown in Equation (9), we continue the rest of the proof framework by following the **ANMs identification** [Hoyer et al. (2008)]. Assuming \tilde{f} is third order differentiable we obtain

$$\frac{\partial}{\partial x_j} \left(\frac{\partial^2 \mathcal{L}(\mathcal{M}) / \partial x_j^2}{\partial^2 \mathcal{L}(\mathcal{M}) / \partial x_i \partial x_j} \right) = 0, \quad \mathcal{M} = \mathcal{M}_2.$$
(10)

Notice that this is not hold when $\mathcal{M} = \mathcal{M}_1$. To see this, imply

$$\frac{\partial^2 \mathcal{L}(\mathcal{M}_1)}{\partial x_j \, \partial x_i} = -f'_{ij} \mathcal{L}''_{x_i},\tag{11}$$

and

$$\frac{\partial^2 \mathcal{L}(\mathcal{M}_1)}{\partial x_j^2} = \mathcal{L}_{\xi_i}^{\prime\prime} (f_{ij}^\prime)^2 - \mathcal{L}^\prime f_{ij}^{\prime\prime} + \mathcal{L}_{x_j}^{\prime\prime}, \tag{12}$$

then we obtain the analogical differential equation (compared with Equation (10)) constructed by \mathcal{M}_1 :

$$\frac{\partial}{\partial x_j} \left(\frac{\frac{\partial^2 \mathcal{L}(\mathcal{M}_1)}{\partial x_i^2}}{\frac{\partial^2 \mathcal{L}(\mathcal{M}_1)}{\partial x_i \partial x_j}} \right) = -2f_{ij}'' + \frac{\mathcal{L}_{\xi_i}' f_{ij}'' - \mathcal{L}_{x_j}''}{\mathcal{L}_{\xi_i}'' f_{ij}'} + \frac{\mathcal{L}_{x_j}'' f_{ij}' - \mathcal{L}_{\xi_i}' (f_{ij}')^2}{\mathcal{L}_{\xi_i}'' (f_{ij}')^2} + \frac{\mathcal{L}_{\xi_i}' \mathcal{L}_{\xi_i}''' f_{ij}' - \mathcal{L}_{x_j}'' \mathcal{L}_{\xi_i}'''}{(\mathcal{L}_{\xi_i}'')^2}.$$
 (13)

Notice that here we omit the variable inside the function notation.

In order to vanish Equation (13) (if both of the forward causal model \mathcal{M}_1 and backward causal model \mathcal{M}_2 hold over the joint probability $p(x_i, x_j)$), we are supposed to obtain the following (linear inhomogeneous) differential equation [Hoyer et al. (2008)] for every fix x_i given $\mathcal{L}''_{\xi_i} \cdot f'_{ij} \neq 0$. It is given by

$$\mathcal{L}_{x_j}(x_j)''' = \mathcal{L}_{x_j}(x_j)'' \phi(x_j, x_i) + \eta(x_j, x_i) , \qquad (14)$$

where $\phi(x_i, x_i)$ and $\eta(x_i, x_i)$ are defined by

$$\phi(x_j, x_i) = -\frac{\mathcal{L}_{\xi_i}^{\prime\prime\prime} f_{ij}'}{\mathcal{L}_{\xi_i}^{\prime\prime}} + \frac{f_{ij}^{\prime\prime}}{f_{ij}'},\tag{15}$$

and

$$\eta(x_j, x_i) = -2\mathcal{L}_{\xi_i}'' f_{ij}'' f_{ij}' + \mathcal{L}_{\xi_i}' f_{ij}'' + \frac{\mathcal{L}_{\xi_i}' \mathcal{L}_{\xi_i}''' f_{ij}'' f_{ij}'}{\mathcal{L}_{\xi_i}''} - \frac{\mathcal{L}_{\xi_i}' (f_{ij}')^2}{f_{ij}'}.$$
(16)

Therefore, from Equation (14) - (16) we conclude that the hypothetical \mathcal{L}_{x_j} admitting a backward causal model is limited in a three-dimensional, which contradicts our priority that all possible \mathcal{L}_{x_j} should be infinite-dimensional [Hoyer et al. (2008)]. That is, from the perspective of generic, the *Nonlinear-MLC* causal model only holds in $x_j \to x_i$ and can not be inverted.

A.2 Proof of Corollary 1

Likewise, Corollary 1 was proven provided the context of standard structure causal models (SCMs). The associating Corollary with respect to SCMs is claimed as the following.

Corollary 1. (SCMs): Assuming data generation procedures are consistent with Equation (1), the pairwise causal dependence between the effect-variable x_i and one of the associating cause-variables $x_j \in \mathcal{M}_{ij}$ is identifiable if and only if

$$\{x_i - \mathcal{R}_i(\mathcal{M}_{ij}^* \cup \hat{pa}_i)\} \perp x_j \tag{17}$$

is satisfied, where $\mathcal{R}(\cdot)$ denotes the non-linear regressor, $\mathcal{M}_{ij}^* := \mathcal{M}_{ij} \setminus \{x_i\}$, and $\hat{pa}_i \subseteq pa_i$. In the view of computing memory in (constraint-based) algorithms, \hat{pa} denotes the determined parent relations, whereas \mathcal{M}_{ij} represent the variables (including x_j and x_i) whose relations remain undetermined within the possible maximal cliques.

Providing identifiable causal directions $\{x_j \to x_i \mid x_j \in \mathcal{M}_{ij}\}$, we assume the causal direction as $x_j \to x_i$ to represent any of the identifiable pairs satisfying Corollary 1 (SCMs). The data generation process of the variable x_i can be formulated as

$$x_i := f_{ij}(x_j) + \sum_{x_t \in \mathbf{pa}_i \setminus \{x_j\}} f_{it}(x_t) + \sum_{\ell_k \in \overline{\mathbf{pa}}_i} f_{ik}(\ell_k) + \varepsilon_i,$$
(18)

According to the causal additive models (CAMs) [Bühlmann, Peters, and Ernest (2014)], the empirical (non-linear) regressor \mathcal{R}_i (for the explaining variable x_i) of general additive models (GAMs) [Maeda and Shimizu (2021)] is defined by

$$\mathcal{R}_i := g_{ij}(x_j) + \sum_{x_t \in \hat{\boldsymbol{p}a}_i} g_{it}(x_t) + \sum_{x_r \in \mathcal{M}^*_{ij}} g_{ir}(x_r),$$
(19)

where $g(\cdot)$ denotes the empirical regression function selected from GAMs.

Since \mathcal{R}_i is decomposed into several specific parts to cancel the effect of hypothetical cause-variables, we substitute the regressor $\mathcal{R}(\cdot)$ in Corollary 1 (SCMs) with Equation (18) and (19). We conclude

$$H_i(x) \perp x_j,$$
 (20)

where $H_i(x)$ is defined by

$$H_{i}(x) := \left\{ f_{ij}(x_{j}) - g_{ij}(x_{j}) \right\} + \left\{ \sum_{x_{t} \in \boldsymbol{p}\boldsymbol{a}_{i} \setminus \{x_{j}\}} f_{it}(x_{t}) - \left\{ \sum_{x_{t} \in \boldsymbol{p}\boldsymbol{a}_{i}} g_{it}(x_{t}) + \sum_{x_{r} \in \boldsymbol{\mathcal{M}}_{ij}^{*}} \hat{g}_{ir}(x_{r}) \right\} \right\} + \left\{ \sum_{\ell \in \boldsymbol{\overline{p}}\boldsymbol{a}_{i}} f_{ik}(\ell_{k}) + \varepsilon_{j} \right\},$$

$$(21)$$

We **highlight** that the variable set (including x_i) consisting of a maximal clique \mathcal{M}_{ij} might involve the correct (but undetermined) parent relations in the view of algorithmic memory:

$$\exists x_r \in \mathcal{M}_{ij}^*, \ x_r \not\perp x_i \ \Rightarrow \ x_r \ \in \boldsymbol{pa}_i.$$
(22)

In light of Lemma 1, the anticipant independence (recall Section 4.1 in the paper) is defined as

$$x_j \perp p a_i \setminus \{ \hat{pa}_i \cup \mathcal{M}_{ij}^* \}.$$
 (23)

We then consider three of the independence combinations of $H_i(x)$ relative to Equation (20). We have

(1) $f_{ij}(x_j) - g_{ij}(x_j) = 0$, which is ideally required by the GAMs regression.

(2) $Z_i(x) \perp x_i$, where $Z_i(x)$ is defined by

$$Z_{i}(x) := \sum_{x_{t} \in pa_{i} \setminus \{x_{j}\}} f_{it}(x_{t}) - \{\sum_{x_{t} \in p\hat{a}_{i}} g_{it}(x_{t}) + \sum_{x_{r} \in \mathcal{M}_{ij}^{*}} \hat{g}_{ir}(x_{r})\}.$$
(24)

Notice that assuming $\{x_j \perp pa_i \setminus \{p\hat{a}_i \cup \mathcal{M}_{ij}^*\}\}$ by Equation (23) enforces Equation (24) to vanish into irrelevant regressing residuals with respect to x_j .

(3) $\xi_i \perp x_j$, where ξ_i is the extensive noise (in the data generation procedure, Equation (1)) defined by

$$\xi_i := \sum_{\ell \in \overline{pa}_i} f_{ik}(\ell_k) + \varepsilon_j.$$
(25)

The independence for the identifiable $x_i \rightarrow x_i$ has already required by Lemma 1 (SCMs).

Thus, the independence implied by Equation (20) eventually reduces to

$$\{Z_i(x) \cup \xi_i\} \perp x_j, \ H_i(x) := 0 + Z_i(x) + \xi_i,$$
(26)

which represents Corollary 1 (SCMs) and is further satisfied by the sub-conditions (1)-(3).

B Average Performance on Experiments Net-Sim2 and Net-Sim3

Based on the corresponding fMRI dataset (Net-Sim3) and the supplemental dataset (Net-Sim2) with lower variable dimension, the average causal discovery performance of the proposed method (*Nonlinear-MLC* algorithm) and baseline methods is listed as the following:

Figure 1: Performance evaluations (precision, recall, f1-score) on fMRI-dataset (sim2).

Figure 2: Performance evaluations (precision, recall, f1-score) on fMRI-dataset (sim3).

Figure 3: Computational cost of causal discovery on fMRI-dataset (sim2 and sim3).

References

- Bühlmann, Peter, Jonas Peters, and Jan Ernest (2014). "CAM: Causal additive models, highdimensional order search and penalized regression". In: *The Annals of Statistics* 42(6), pp. 2526– 2556.
- Hoyer, Patrik et al. (2008). "Nonlinear causal discovery with additive noise models". In: Advances in neural information processing systems 21.
- Maeda, Takashi Nicholas and Shohei Shimizu (2021). "Causal additive models with unobserved variables". In: Uncertainty in Artificial Intelligence. PMLR, pp. 97–106.
- Spirtes, Peter et al. (2000). Causation, prediction, and search. MIT press.