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A Proofs

The appendix provides the proof of Lemma 1 1 and Corollary 1 (identifiable theory of Latent-ANMs).

Data Generation Procedure (Nonlinear-MLC Causal Models):

Denote GX with X = {x1, x2, . . . , xd} as directed acyclic graphs (DAG) and ε = {ε1, ε2, . . . , εd} as i.i.d.
latent noises, the generation of pairwise additive-noise-models (ANMs) xj → xi characterized by observed
parents (pa) and unobserved parents (pa) can be formalized as:

xi :=
∑

xj∈pai

fij(xj) + ξi, (1)

where f(·) denotes the third order differentiable non-linear functions that are in accord with the ANMs
assumption, and an extensively latent noise ξi := εi ∪ f(pai) = εi +

∑
ℓk∈pai

fik(ℓk) is introduced into
Equation(1) for modelling the multiple latent confounding from the multiple unobserved parents pa.

Lemma 1. Assuming data generation procedures are consistent with Equation (1), the pairwise cause-
and-effect C → E among (multiple unobserved) pairs C∗ → E is identifiable if and only if

(ξE ⊥⊥ C) ∧ (ξE := εE ∪ f(C∗)) (2)
is satisfied, where other multiple unobserved causes C∗ are denoted as C∗ := C\C = paE .

Corollary 1. Assuming data generation procedures are consistent with Equation (1), the pairwise cause-
and-effect C → E over a maximal clique M is identifiable if and only if

(E −RE(M∗) ⊥⊥ C) ∧ (M∗ := MC,E\ {E}) (3)
is satisfied, where MC,E represents all observed variables including C and E within a maximal clique.

A scratch of proofs is shown as the following. Lemma 1 is proved by incorporating multiple latent
confounding into structure causal models (SCMs), consisting with the ANMs proof framework [Hoyer
et al. (2008)] — restricting non-linear function class over differential equations to exhibit asymmetry.

On the basic of Lemma 1, proofs of Corollary 1 sheds light on their mutual equivalences, given the
premises in which leveraging maximal-clique-patterns has properly expunged the confounding effect.

1Identifiability guaranteed by Lemma 2 (Section 4.2) has been proven in the literature [Spirtes et al. (2000)].
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A.1 Proof of Lemma 1

We proved Lemma 1 by transferring variable descriptions beforehand — from the intuitive pairwise
cause-and-effect C → E into the standard structure causal models (SCMs) with the variables X =
{x1, x2, . . . , xd}. The corresponding Lemma relative to SCMs is stated as the following.

Lemma 1. (SCMs): Assuming data generation procedures are consistent with Equation (1), the pairwise
causal dependence between the effect-variable xi and one of the associating cause-variables xj ∈ pai is
identifiable if and only if

{ξi ⊥⊥ xj} ∧ {ξi := εi +
∑

ℓk∈pai

fik(ℓk)} (4)

is satisfied, where ξi is denoted as an extensive noise (e.g. compared to the original noise εi that has
satisfied εi ⊥⊥ xj). The extensive noise ξi further models the multiple latent confounding from the
multiple unobserved parents pai.

Taking the potential latent confounders ℓk ∈ pai into consideration, Lemma 1 (SCMs) provides an
independent condition to identify the unambiguous causal directions {xj → xi | xj ∈ pai}. Next,
suppose we use xj → xi (xj = pai) to represent any of the identifiable pairs satisfying Lemma 1 (SCMs).

Notice that the proof of Lemma 1 (SCMs) is equal to prove that the Nonlinear-MLC causal model only
holds in the causal direction xj → xi. According to Equation (1), we further formalize the generation
procedure as to a correct causal model M1 in the following

M1 : xi := fij(xj) + Fi(ℓi) + εi. (5)

Where Fi(ℓi) =
∑

ℓk∈pai
fik(ℓk). Without loss of generality, we slightly distinguish the reversed non-

linear function and the latent noise, in the sense that an inversed (incorrect) causal model M2 satisfies
M2 : xj := f̃ji(xi) + F̃j(ℓj) + ε̃j . (6)

We factorize the marginal distribution (with multiple unobserved parents) entailed by both models:

p(xi, xj) =
∑
ℓ

p(xi, xj | ℓ) p(ℓ) =

{∑
ℓi

p(xi | xj , ℓ,M1) p(xj | ℓ,M1) p(ℓ | M1),∑
ℓj

p(xj | xi, ℓ,M2) p(xi | ℓ,M2) p(ℓ | M2).
(7)

Notice that the independent noise ε is generalized into (the possibly dependence) ξ, along with the
independence ξi ⊥⊥ xj entailed by the identifiable causal model M1:

ξ = F(ℓ) + ε =
∑

ℓk∈pa

fk(ℓk) + ε, ξi ⊥⊥ xj . (8)

Given likelihood functions L = log p(·) and injective relations between ξi and xj (ε̃j and xi), combining
Equations (7) and (8) yields

L(M) =

{
Lξi(xi − fij(xj)) + Lxj (xj), M = M1,

Lε̃j

(
xj − f̃ji(xi)− F̃j(ℓ)

)
+ Lxi

(xi), M = M2.
(9)

Additionally, we herein emphasize that the strict independence ξi ⊥⊥ xj ensures the expression of
L(M = M1) in Equation (9). In other words, the conditional independence (between ξi and xj) is
insufficient to yield that expression in form of regression-based replacement (e.g. replace Lxi|xj ,ℓi(xi)
in eq.(7) by Lξi(xi − fij(xj)) in eq.(9)). The reason is given by the non-linearity, which implies that
the variables’ non-linear interaction, compared with linearity, will compromise the effect of regression
(recall the Introduction and Section 3 in the paper).

Based on the formalism shown in Equation (9), we continue the rest of the proof framework by following
the ANMs identification [Hoyer et al. (2008)]. Assuming f̃ is third order differentiable we obtain

∂

∂xj

(
∂2L(M)/∂x2

j

∂2L(M)/∂xi∂xj

)
= 0, M = M2. (10)
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Notice that this is not hold when M = M1. To see this, imply

∂2L(M1)

∂xj ∂xi
= −f ′

ijL′′
xi
, (11)

and

∂2L(M1)

∂x2
j

= L′′
ξi(f

′
ij)

2 − L′f ′′
ij + L′′

xj
, (12)

then we obtain the analogical differential equation (compared with Equation (10)) constructed by M1:

∂

∂xj

 ∂2L(M1)
∂x2

j

∂2L(M1)
∂xi∂xj

 = −2f ′′
ij +

L′
ξi
f ′′′
ij − L′′′

xj

L′′
ξi
f ′
ij

+
L′′
xj
f ′′
ij − L′

ξi
(f ′′

ij)
2

L′′
ξi
(f ′

ij)
2

+
L′
ξi
L′′′
ξi
f ′′
ij − L′′

xj
L′′′
ξi

(L′′
ξi
)2

. (13)

Notice that here we omit the variable inside the function notation.

In order to vanish Equation (13) (if both of the forward causal model M1 and backward causal model M2

hold over the joint probability p(xi, xj)), we are supposed to obtain the following (linear inhomogeneous)
differential equation [Hoyer et al. (2008)] for every fix xi given L′′

ξi
· f ′

ij ̸= 0. It is given by

Lxj
(xj)

′′′ = Lxj
(xj)

′′ϕ(xj , xi) + η(xj , xi) , (14)

where ϕ(xj , xi) and η(xj , xi) are defined by

ϕ(xj , xi) = −
L′′′
ξi
f ′
ij

L′′
ξi

+
f ′′
ij

f ′
ij

, (15)

and

η(xj , xi) = −2L′′
ξif

′′
ijf

′
ij + L′

ξif
′′′
ij +

L′
ξi
L′′′
ξi
f ′′
ijf

′
ij

L′′
ξi

−
L′
ξi
(f ′′

ij)
2

f ′
ij

. (16)

Therefore, from Equation (14) - (16) we conclude that the hypothetical Lxj
admitting a backward causal

model is limited in a three-dimensional, which contradicts our priority that all possible Lxj
should be

infinite-dimensional [Hoyer et al. (2008)]. That is, from the perspective of generic, the Nonlinear-MLC
causal model only holds in xj → xi and can not be inverted.

A.2 Proof of Corollary 1

Likewise, Corollary 1 was proven provided the context of standard structure causal models (SCMs).
The associating Corollary with respect to SCMs is claimed as the following.

Corollary 1. (SCMs): Assuming data generation procedures are consistent with Equation (1), the
pairwise causal dependence between the effect-variable xi and one of the associating cause-variables
xj ∈ Mij is identifiable if and only if

{xi −Ri(M∗
ij ∪ ˆpai)} ⊥⊥ xj (17)

is satisfied, where R(·) denotes the non-linear regressor, M∗
ij := Mij\ {xi}, and ˆpai ⊆ pai. In the

view of computing memory in (constraint-based) algorithms, p̂a denotes the determined parent relations,
whereas Mij represent the variables (including xj and xi) whose relations remain undetermined within
the possible maximal cliques.

3
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Providing identifiable causal directions {xj → xi | xj ∈ Mij}, we assume the causal direction as xj → xi

to represent any of the identifiable pairs satisfying Corollary 1 (SCMs). The data generation process of
the variable xi can be formulated as

xi := fij(xj) +
∑

xt∈pai\{xj}

fit(xt) +
∑

ℓk∈pai

fik(ℓk) + εi, (18)

According to the causal additive models (CAMs) [Bühlmann, Peters, and Ernest (2014)], the empirical
(non-linear) regressor Ri (for the explaining variable xi) of general additive models (GAMs) [Maeda and
Shimizu (2021)] is defined by

Ri := gij(xj) +
∑

xt∈p̂ai

git(xt) +
∑

xr∈M∗
ij

gir(xr), (19)

where g(·) denotes the empirical regression function selected from GAMs.

Since Ri is decomposed into several specific parts to cancel the effect of hypothetical cause-variables,
we substitute the regressor R(·) in Corollary 1 (SCMs) with Equation (18) and (19). We conclude

Hi(x) ⊥⊥ xj , (20)
where Hi(x) is defined by

Hi(x) := {fij(xj)− gij(xj)}+

 ∑
xt∈pai\{xj}

fit(xt)− {
∑

xt∈p̂ai

git(xt) +
∑

xr∈M∗
ij

ĝir(xr)}

+ {
∑

ℓ∈pai

fik(ℓk) + εj},

(21)
We highlight that the variable set (including xi) consisting of a maximal clique Mij might involve the
correct (but undetermined) parent relations in the view of algorithmic memory:

∃ xr ∈ M∗
ij , xr ⊥̸⊥ xi ⇒ xr ∈ pai. (22)

In light of Lemma 1, the anticipant independence (recall Section 4.1 in the paper) is defined as
xj ⊥⊥ pai\{ ˆpai ∪ M∗

ij}. (23)

We then consider three of the independence combinations of Hi(x) relative to Equation (20). We have

(1) fij(xj)− gij(xj) = 0, which is ideally required by the GAMs regression.

(2) Zi(x) ⊥⊥ xj , where Zi(x) is defined by

Zi(x) :=
∑

xt∈pai\{xj}

fit(xt)− {
∑

xt∈p̂ai

git(xt) +
∑

xr∈M∗
ij

ĝir(xr)}. (24)

Notice that assuming {xj ⊥⊥ pai\{ ˆpai ∪ M∗
ij}} by Equation (23) enforces Equation (24) to vanish into

irrelevant regressing residuals with respect to xj .

(3) ξi ⊥⊥ xj , where ξi is the extensive noise (in the data generation procedure, Equation (1)) defined by

ξi :=
∑

ℓ∈pai

fik(ℓk) + εj . (25)

The independence for the identifiable xj → xi has already required by Lemma 1 (SCMs).

Thus, the independence implied by Equation (20) eventually reduces to
{Zi(x) ∪ ξi} ⊥⊥ xj , Hi(x) := 0 + Zi(x) + ξi, (26)

which represents Corollary 1 (SCMs) and is further satisfied by the sub-conditions (1)-(3).
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B Average Performance on Experiments Net-Sim2 and Net-Sim3

Based on the corresponding fMRI dataset (Net-Sim3) and the supplemental dataset (Net-Sim2) with
lower variable dimension, the average causal discovery performance of the proposed method (Nonlinear-
MLC algorithm) and baseline methods is listed as the following:

Figure 1: Performance evaluations (precision, recall, f1-score) on fMRI-dataset (sim2).

Figure 2: Performance evaluations (precision, recall, f1-score) on fMRI-dataset (sim3).

Figure 3: Computational cost of causal discovery on fMRI-dataset (sim2 and sim3).
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