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What specific questions as to causal networks learning
do you care about?



Question as to Causal Graphs Learning
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[2] Minati, Ludovico, et al. "Synchronization, non-linear dynamics and low-frequency fluctuations: analogy between spontaneous brain activity and networked single-transistor  
chaotic oscillators." Chaos: An Interdisciplinary Journal of Nonlinear Science 25.3 (2015).

[1] Introduction to FSL, Andrew Jahn
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Brain “Networks"

https://www.youtube.com/@AndrewJahn


What assumptions and methodology give rise to
the causal identification?



Assumptions and Methodology for Identification 
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Ø Probabilistic Graphical Models (GPMs) 

Ø Structure Causal Models (SCMs)

Ø Constraint-based method: the PC algorithm

Ø Hybrid-based approach: MLC-LiNGAM

Ø Define “latent variables paths” by the CAM-UV approach

Related Work, Issues, and Motivation
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Ø Functional-based methods: LiNGAM, CAM

Ø Methods for Latent Confounders (Variables)

Illustration of
“Latent Variables Paths”

Spirtes, C. N. Glymour, et al. (2000)

Shimizu, P. O. Hoyer, et al. (2006)

Chen et al. (2021)

Maeda and Shimizu (2021) 
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Related Work, Issues, and Motivation
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In order to make it more clear, 
What is the most important idea for modeling this case? 
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Causal Models: Latent Additive-Noise-Models (L-ANMs)

Ø Model Definition (Theory) 

Ø Empirical Regressor (Algorithm)

Ø Directed acyclic graphs (DAG) :

Ø Data generation procedure:

Ø Non-linear Identifiable Condition as to xj

Primary Ideas for Modelling

Nonlinear causal discovery with additive noise models. Hoyer et al. (2008)

(                                  )

�i:and



what is the intuition for the new causal identification
Based on this model, 



Models and Assumptions for Identification 5/7

Chen, XZ*., Chen, W*., Cai, RC. Non-linear Causal Discovery for Additive Noise Model with Multiple Latent Confounders. Xuanzhi’s Personal Website. 2023

Contribution-1: The Latent-ANM Condition

Nonlinear Identifiable Condition: 
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Contribution-2: The Nonlinear-MLC Algorithm
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How did you evaluate your approach?
(the “Nonlinear-MLC” algorithm)



Testing for the Approach6/7

Performance on Functional Magnetic Resonance Imaging Data

Brain “Networks"
from fMRI Data (NetSim-3)
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[1] https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
[2] Smith, Stephen M., et al. "Network modelling methods for FMRI." Neuroimage 54.2 (2011): 875-891.

Precision Recall F1-Score

Computational Cost
Average



Finally, how can I get start to apply the approach? 
(for general non-linear causal discovery)
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Ø caudimlc: Light Python Package for Hybrid-Based Causal Discovery
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Source

Ø Provide easy-to-use Python APIs to learn an empirical causal graph with relative efficiency

Ø A Quote from Elements of Causal Inference

Ø Integrate implementations of hybrid-based approaches and micro workflow of causal discovery

Ø Github: https://github.com/xuanzhichen/cadimulc 

“Statistical causal methods do not need to be motivated 
by the proofs of the identifiability results.” 

“Causal methods that follow the proofs closely are 
often inefficient in making use of the data.”

https://github.com/xuanzhichen/cadimulc


Thanks for Watching

xuanzhichen.42@gmail.com / xuanzhichen.github.io


