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PREFACE

It was an accident, but a happy one, for me to meet causation and complete relevant research work
(X. Chen et al., 2023b; X. Chen et al., 2023a), where I spent roughly three years to study its moral,
metaphor, and inspiration to machine intelligence. A substantial portion of my academic endeavors
in undergraduate studies ended up with a preprinted paper entitled ”Non‐linear Causal Discovery
for Additive Noise Model with Multiple Latent Confounders”, as shown in the title of this report.
During writing this report, I also always required myself: try to write only the ideas derived from
your personal ”Eureka” moments in comprehending intuitions of causality. As a result, my personal
taste affected the preference of topics. Judea Pearl (Pearl et al., 2018; Pearl, 2009) and Clark Glymour
(Spirtes et al., 2000) initially shaped my view of the causality world, bringing insights into graphical
causation unveiled by machine learning. Schölkopf, Bernhard (Peters et al., 2017) evoked my think-
ing about viewing the distribution nature entailed from structural causality as the hard problem in
machine learning. Analyzing the causal rationale of these two types of methodologies for machine
learning, my narration concerns their underlying causal assumptions implied by the causal model.

One shortcoming of this report is that I may be afraid of being able to comprehensively cover the
entire research process through Chapter 4 ”Literature Review”, Chapter 6 ”Programming (Code Sam-
ples)”, and Chapter 7 ”Results, Discussion, and Related Work” in this report. This is in part because
there is a two-year distance away from the most essential stage of the research work, with some
scratch ideas and source code have been inevitably fuzzy according to my recollection. The other
weakness lies in lacking time for crafting concise organization, since I decided relatively late in mid-
November to write the report for my post-graduate application. The upcoming deadlines are issued.

Notwithstanding, I never write a research report for writing a research report. Admittedly, ques-
tions still swirling in my minds are, why do I posit myself seeming like writing for someone to read,
given the fact that I am merely an undergraduate whose work is 99% to be considered as trivial?
And, even for non-technical readers, there has been impressive and extraordinary learningmaterials
such as “Introduction to causal inference” (Neal, 2020) in the field, so why do I make voice into the
area in terms of the intuitions of causality? For the first question, I know my knowledge in causation
will be inevitably dampen by time as I have graduated and left the field. Thus, at least I want to
preserve them via text. I even felt fear for the second question when I was writing my personal essay
(X. Chen, 2024) early in this year to popularize causality notions, but the lesson at worst I learned
from that previous writing experiences is just that I know little about causation. I feel a modicum of
comfort that in this report I kept making progress compared to the last time I did. So here I go.

Xuanzhi Chen
December 5, 2024
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ABSTRACT

Nearly all my undergraduate studies majoring in computer science consist in the research of causal
discovery—developingmodel-based approaches capable of automating the discovery of cause-and-
effect from observational raw data. When I was preparing for post-graduate study in November,
2024, I was recommended to supplement a written report regarding my past completed work on
”generic causal discovery” (e.g.causality theorem and algorithms applied into generic systems that
possess nonlinearity and confounders). During my writing, I realize that the report may serve not
only as a collection of mywork, but an ultimate opportunity bywhich I am capable of contributing to
the field for broader audiences interested in causality. I thereby hope that this report is able to com-
plement extant work in twoways: First, it may reinforce the intuitions as to arguably two of the most
essential philosophies/principles at the interface of causal discovery and Machine Learning (ML
hereafter). Surrounding the key question ”how is data generated by Nature?”, I attempt to have
this done by explaining the classic everyday-life examples whose prototype and causal metaphor
lied behind used to confuse me when at that time I was a beginner in the field. Second, this report
may provide a sample research workflow regarding a specific task of causal discovery, along with
hands-on experimental details. Although I avoid to tout mywork— a hybrid-based causal discovery
framework — as an outstanding approach out of this report, it may be conductive to a better under-
standing if one tries to ”hybridize” differentML-provoked ideas under a united causality framework.

I make every effort to offer a systematic introduction into the topic, as well as my relevant research
work, that is (at best) accessible to the readers with very basic statistical-ML knowledge and little
insights into causal discovery. Therefore, different to my previous research papers, I adopt relatively
informal language and flexible structures during writing, in particular the front part of the report.
With that being said, I should state that it is overall meant to be written for (technical) readers who
wish to make assessment on my undergraduate studies in the specialization of ML and causality.

Keywords: Causal Discovery,Machine Learning, Intuitions of Causality, Sample ResearchWorkflow
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1
INTRODUCTION

1.1 Background

While the well-known Randomized Control Trials (RCTs) are widely accepted as the golden stan-
dard for Inferred Causation (Hariton et al., 2018), it is normally inaccessible due to the notoriously
long durations or ethical concerns related to RCTs (e.g. it’s unrealistic to experiment on healthy sub-
jects to study whether years of smoking cause lung cancer) (Pearl et al., 2018). This is then what
drives us to the question: Is it possible to automate the discovery of causation in the uncontrolled or
observational raw data (as opposed to imposing human intervention in RCTs)? (Chapter 2)

1.2 Prerequisite

Over the last 40 years, there is excitement about progress at the intersection of Causal Discovery
and machine learning (as well as causal thinking for AI). While the technical details thereof might
be boring and daunting for readers unfamiliar with causation, the good news is, many conceptual
ideas in Causal Discovery are actually closely tied to our common sense. (Chapter 3)

1.3 Related Work

Equipped with the insights into how machine learning techniques are capable of advancing Causal
Discovery, two tracks of methodologies are then introduced in this report. My narration with re-
spect to these classic approaches serves as a prelude to the work on hybrid-based Causal Discovery
frameworks, which are developed by the DMIR (Data Mining and Information Retrieve) laboratory,
arguably the first team in China studying causality learning. (Chapter 4)

1.4 Undergraduate Research Project(s)

My understanding of causality has primarily been shaped by Judea Pearl (Pearl et al., 2018; Pearl,
2009), Clark Glymour (Spirtes et al., 2000) and Schölkopf, Bernhard (Peters et al., 2017), with much
of it went intomyundergraduatework (X. Chen et al., 2023b; X. Chen et al., 2023a; X. Chen, 2024) that
is (mainly) completed during my internship in the DMIR lab. (Chapter 5, Chapter 6, and Chapter 7)
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2 1. Introduction

1.5 Reading Guidance for Different Audiences

In an effort to increase readability of the report’s content related to Causal Discovery, also to make
my undergrad research work relatively accessible for broader audiences (if applicable), I thereby in
this report adopted relatively informal language and flexible structures, avoiding abruptly insert-
ing jargon without prior explanation. However, it’s worth noting some of the content (nearly 60%
of this report) are still meant to be written for technical readers — including experts, faculty, and/or
employers — who wish to make assessment on my undergraduate research work.

Table 1.1 illustrates the associated reading guidance that allows the different types of audiences to
navigate through this report. I also provided friendly ”hooks” in each of primary sections by which
readers can conveniently back to this table of reading guidance at any time they need.

Table 1.1: Reading Guidance of This Report for Different Audiences.

Chapter Section Technical Readers Interested Readers

Chapter 2 (Background) Section 2.1 - Section 2.3 𝒪 ✓

Chapter 2 Section 2.4 ✓∗ ✓

Chapter 2 Section 2.5 ✓ ✓∗

Chapter 3 (Prerequisite) Section 3.1 ✓∗ ✓

Chapter 3 Section 3.2 ✓ ✓∗

Chapter 3 Section 3.3.1 - Section 3.3.3 ✓ ✓

Chapter 3 Section 3.3.4 - Section 3.3.5 ✓ ✓∗

Chapter 3 Section 3.4.1 - Section 3.4.3 ✓ ✓

Chapter 3 Section 3.4.4 - Section 3.4.5 ✓ ✓∗

Chapter 4 (Literature Review) Section 4.1 ✓∗ 𝒪
Chapter 4 Section 4.2 ✓ 𝒪
Chapter 5 (Methodology) All Sections ✓ 𝒪
Chapter 6 (Programming) All Sections ✓ 𝒪
Chapter 7 (Results and Discussion) Section 7.1 - Section 7.2 ✓ ✓∗

Chapter 7 Section 7.3 ✓∗ 𝒪
Chapter 7 Section 7.4 ✓ 𝒪
Chapter 8 (Personal Notes) – 𝒪 𝒪

Please kindly notice that there are three kinds of symbols {✓,✓∗ ,𝒪} in the table to help you judge
the readability of the related sections:

• [ ✓ ]: The related section(s) is tailor-made for this type of audience.
• [ ✓∗]: I am not ensure about the readability (and its reading value) of the related section(s) for

this type of audience; it may be left for the readers themselves to determine:

* either the technical readers may found it naive and decide to skip,
* or the general interested readers may found it obscure and decide to skip.

• [ 𝒪 ]: The related section(s) is optional for this type of audience.

Last but not least, although I try my best to cite relevant results, I don’t meant to inform readers to
dig into exactly which literature that contains the concept; I cite the result since this report may cover
a diversity of readers, thus I try to be very careful about every idea I put forward in this report.



2
CAUSAL DISCOVERY: AN INDUCTION GAME PLAYED

AGAINST NATURE?

Trying to distinguish existing introductory materials related to the topic of Causal Discovery, one
underlying purpose with which I organize this Chapter is to drive my readers to a big picture with
respect to a wider implication of Causal Discovery. To put it alternatively, the odds are that finding
out a Causal Graph — the objective of Causal Discovery in narrow senses — is relatively a small
portion in comprehending causality. It may be helpful to further realize that the Causal Graph is
fundamentally a kind of knowledge representation that highly generalizes a kind of relationship
that is deterministic, irreversible, and thus stable. A common slogan in AI sufficiently summarizes
my opinions made in this Chapter, which reads ”representation first, discovery second”.

Reminder: Several friendly hooks here helping direct you back to the previous Chapter 1, the next Chapter 3,
the table of Contents, or the Reading Guidance of This Report for Different Audiences.

2.1 Automating the Discovery of Causes

An exemplar around the broader discussion on observational raw data lies from where the Nature
sits. Normally, onemay assume that Nature by itself surreptitiously possesses a set of the established
rules to manipulate variables in environment, out of which some rules, for example, may have been
characterized as well-known physical equations such as the Laws of Thermodynamics and the New-
ton’s Laws of Motion — But it’s more than that. Widespread phenomena regarding predestined
results complying with a certain rule, have long been in various philosophical debate on Causation.

Yet I, undoubtedly, have little knowledge about Philosophy. It’s worth noticing that, however, akin
to physicists who discover the physical law inductively from experimental data, the possibility of
discovering causation merely from environmental raw data is thus a task that can be viewed as an
induction game (Pearl, 2009) played against Nature — known as Causal Discovery.

2.2 Does Correlation Imply Causation?

One may argue that, nevertheless, statistical patterns automatically recognized by machine learn-
ing approaches do not necessarily imply causation. This common perception is fairly true though, a
more rigorous statement is that ”Correlation Does Not (Logically) Imply Causation” (Pearl, 2009).

3
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Thus, a more meaningful, and a more practical question is to ask, given what prerequisite does a
machine learning technique being capable of prompting us to perceive a weaker relationship (Pearl,
2009) existing between the two? In terms of the mainstream progress, such prerequisites will be
introduced in form of the several Causal Assumption in the next Chapter 3.

2.3 Conundrums in Causal Discovery

Although the Causal Assumption makes it theoretically possible to statistically discover structural
causation, or the Causal Graph in terminology, one persisting conundrum consists in computational
feasibility. By computational feasibility I mean the popular causality theory built upon the relation-
ship between graphs and statistical distributions, which requires numerous algorithmic searches in
both sides back and forth. As I will show in Chapter 4, it’s natural for one to tease out the develop-
ment of classic Causal Discovery algorithms in mid-1980s through their sharing target at attaining
feasible computation. The other emerging track introduced in Chapter 4 is to resort to delicately
fitting the functional composition between cause-and-effect. Thus another conceivable conundrum
thereof lies in the delicate priori knowledge that is imposed on the complexion of causation.

It’s worth noting that in above I merely introduce conundrums with respect to inferred theories
in causality. When it comes to hands-on applications, impacts such as statistical errors in terms of
the sensitivity and tolerance of Causal Discovery approaches over dataset are just as important, if
not more, than these conceptual ideas (Don’t ask me how I know that...).

2.4 Implications of Causal Graphs

Moving on, let’s talk about the Causal Graph in this section, which is personally my favorite part
in this report. While the (structural) applications of the Causal Graph seems uncommon in litera-
ture related to Causal Discovery, this report attempts to provide readers with thorough perspectives
through which the roles of causal structures in the causation realms may become clearer. The fol-
lowing content in this Section is briefly rephrased and is referred from my online personal essay, “A
Primer on Causal Diagram Learning” (X. Chen, 2024), that serves as the a kind of personal activity to
popularize some valuable notions in the relevant topic.

Reminder: Several friendly hooks here helping direct you back to the next Section 2.5, the current Chapter 2,
the table of Contents, or the Reading Guidance of This Report for Different Audiences.

2.4.1 Intervention, Graph Surgery, and Causal Inquiry

One implication of the Causal Graph is to ”translate” cause-and-effect inquiries from the perspective
of causal diagrams — how to execute different ”operations” on the causal diagram in light of differ-
ent requirements for inquiry? For readers who don’t mind a bit formula (Equation 2.1), by causal
inquiries I mean the delicate difference (referred to as Average Causal Effect (ACE) for bi-variate
cases) with respect to a situation with and without Causal Intervention:

𝐴𝐶𝐸 := 𝑃(𝑦 | 𝑑𝑜(𝑋 = 𝑥)) − 𝑃(𝑦 | 𝑑𝑜(𝑋 = 𝑥′)). (2.1)
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In the context of probabilistic causation, the intervention expression is often formally denoted as
𝑑𝑜(𝑥) (reads ”do calculus”, meaning ”doing” an action instead of ”observing” an action). The value
of the Causal Graph, namely a testable permission for answering the causal inquiry through graph
operations, lies in that it foresightly implies the computational feasibility in terms of answering the
(theoretical) causal inquiry merely through statistical estimation in the real world.

Metaphorically speaking, we can execute different types of ”surgery” for the causal diagram to gain
some intuitions of these inquires. Literally, two ”scalpels” relative to the graph’s nodes are called (in
Judea Pearl’s words) ”to hold it on constant” and ”to tweak it on compulsion”. ”Tweaking the node” in a
causal diagram refers to enforce an intervention, thus the other arrows pointing to the nodewaited to
be tweaked will be deleted from causal diagrams — the only remained arrow suggests ”the tyranny
of our humanmuscle” to ”tweaking it”. Meanwhile, ”hold constant the node” is similar to ”control”,
but implicitly involves the Causal Counterfactuals information. This is because the most natural way
to keep the (other) factors unchanged (while tweaking the main node) is to just render these factors
to be counterfactual to the after-intervention situation.

Consequently, different kinds of the graph surgery mentioned above will result in different kinds
of ”sub-graphs”. One insight into the sub-graph is to view it as the ”bed” where specific criteria
relative to the aforementioned ”testable permission in graphs” can be applied. For instance, you
may better understand my words if you have heard about the ”back-door criterion” or ”back-door
adjustment” (Pearl et al., 2018) (incidentally, if there are more than one sub-graph, then multiple
sub-graphs are tied to the well-known ”dynamic plan (James Robins, 1995)” or ”sequential back-
door adjustment (Pearl, 2009)”).

Relevant mathematical details can be found in my essay (X. Chen, 2024) (Section 3.2.1-3.2.2).

2.4.2 Counterfactuals, Causal Beam, and Attribution Analysis

The other implication of the Causal Graph its capability of attribution analysis and assisting one to
discover a logically Actual Cause. Considering a causal link of ”mega-fire→ climate change”, for
instance, one singular circumstance can occur if the causal link is ”preempted” by other causes such
as human influence. By human influence I mean one may conceive a case where artificial drone can
timely detect the mega-fire in Nature and prompt firemen to go and extinguish the fire. Thus, mega
fire is a legitimate but not an Actual Cause, since the impact of a Causal Preemption is just about to
invalidate its (the mega fire’s) continuous causal effects to climate change, making the Actual Cause
determination slightly elusive.

Interpreting by causal diagrams, the invalidation essentially amounts to expunge the arrows stem-
ming from the cause that is preempted, which brings us to a revelation: In some of the singular
scenarios, we can and should ”slim down” a causal diagram by deleting some trivial arrows. No-
tice that this makes sense because some causal relations genuinely cannot exist when preemption
accidentally occurs in that scenarios. Let us take a bit addition to our vocabulary to describe this
behavior: ”slimming a Causal Graph down to a Causal Beam (Pearl, 2009). The Causal Beam, less
rigorously, suggests that a causal graph is projected to a sub-graph relative to a singular scenario,
serving as a switch in terms of the ”frame of reference” of the surroundings. Therefore, the function
of constructing the Causal Beam lies in helping us to clearly figure out the singular cause or, may be
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exactly the Actual Cause, by some technical transformation I do not show here.

Once again, for those readerswhomay notmind a bit formalism concept and have heard about the fa-
mous notion of ”necessary-and-sufficient causation” (Pearl et al., 2018), I can herein briefly introduce
that the Probability of Actual Cause (PA) can be informally viewed as calculating the combination
of both the Probability of Necessary Cause (PN) and the Probability of Sufficient Cause (PS) over
the Causal Beam (let’s denote it as 𝒢′), instead of the Causal Graph (let’s denote it as 𝒢):

𝑃𝐴(𝑋 → 𝑌) = 𝑃𝑁𝑋→𝑌
𝒢′ ∪ 𝑃𝑆𝑋→𝑌

𝒢′ , {𝑋,𝑌} ⊂ 𝒢. (2.2)

Please notice that both PN and PS are causality concept relying on the Causal Counterfactuals infor-
mation. This is because normally when we discuss the attribution analysis, we have the ”evidence”
information beforehand. Both PN and PS calculus the information counterfactual to the current ”ev-
idence” in probability context, which help us make a thorough assertion about the causes.

Relevant mathematical details can be found in my essay (X. Chen, 2024) (Section 3.1.1-3.1.2).

2.4.3 Causal Measurement Models

Most of the time, we are discussing Causal Discovery without the presence of unknown common
factors (referred to as the Latent Confounder in terminology). The Latent Confounder is the unmea-
surable variable in systems that affects more than one of other measurable variables, which poses
significant challenge for Causal Discovery. The good news is, some insightful clues to causal infer-
ence are still available, and the idea behind them is about the ”trade-off” — the model constraints to
simplify (a Causal Graph) usually brings the statistics strength to identify (the Causal Graph).

With a bit terminology, if one assumes that a Causal Graph represents the linear causal relation-
ships with a more simple ”tree-like structure” than the regular graphs — also referred to as the
Causal Measurement Models with Causal Purity in causal terminology — then such constrainted
Causal Graph can bring us additional insights to identify its structure, even with the existing Latent
Confounder. Such constraints have been mathematically characterized as the well-known Vanishing
Tetrad Difference or the Tetrad Constraints, which can be found in the work Causation, prediction, and
search (Spirtes et al., 2000) (Chapter 6, 10, and 11).

Similarly, relevant mathematical details can also be found in my essay (X. Chen, 2024) (Section 4.2).

2.5 A View Based on Bayesian Networks

I end up this Chapter with a classic perspective that discusses the relationship between a Bayesian
Network (BN) and a Causal Network. The theory of Inferred Causation, consequently, is introduced
in Causality (Pearl, 2009), with its author Judea Pearl being acclaimed as the inventor of BN.

Reminder: Several friendly hooks here helping direct you back to the previous Section 2.4, the next Chapter 3,
the current Chapter 2, the table of Contents, or the Reading Guidance of This Report for Different Audiences.



2.5. A View Based on Bayesian Networks 7

It is an insightful perspective to take the causal network, or roughly the Causal Graph, as a blue-
print that connects different variables {𝑥1 , 𝑥2 , ..., 𝑥𝑑}, and shows how the variable affects one another
(e.g. 𝑥 𝑗 → 𝑥𝑖 or vice versa) to represent how Nature may organize its rules to govern variables in
environment (recall Section 2.1 early in this Chapter). Commonly, such perspective can be reached
by adopt a BN (Stephenson, 2000). However, what’s the difference between a regular BN and, more
specifically, a causal BN?While the BN is commonly thought to be a statistical tool designed to reach
inference under ”uncertainty” (Stephenson, 2000), it is anticipated at its best to be constructed under
the moral of a ”certain” rule, namely the causal relationship (Pearl et al., 2018).

In light of this, one can carefully find that Conditional Independency (CI) occurred in everyday-
life phenomena is in fact akin to a kind of by-product of the causal relationships stored in causal BN.
To see that, let’s consider a classic example (Pearl, 2009) in description of the relationships among
whether rain falls (𝑋1), whether the pavementwould getwet (𝑋2), andwhether the pavementwould
be slippery (𝑋3). Since additionally introducing variable 𝑋2 can quickly change our judgment on
the relationships between 𝑋1 and 𝑋3 (That is, 𝑋1 and 𝑋3 are normally considered to be correlated at
first, but then are judged to be uncorrelated after we have the information of 𝑋2), we may deem such
sensitivity to the ”granularity” of relationship as something hardwired to our brains, which implies
the causal thinking useful for understandingNature. Wewill see how this intrinsic intuition is math-
ematically characterized as theMarkovAssumptionwhenwemove to Section 3.3 in the next Chapter.

To summary, Causal Discovery is equivalently meant to discover causal representation of a causal
BN, which is presumed to characterize only causation (as compared to the general correlation).
While a BN may occasionally be used as a directed cyclic graph to represent feedback cycles with in-
dustrial application, this report will focus the causal BN in form of Directed Acyclic Graphs (DAGs),
also referred as to the Causal Graph, the Causal Diagram, or the Causal Structure.



3
INTUITIONS FOR MACHINE LEARNING TECHNIQUES

ON CAUSAL DISCOVERY

The Causal Graph introduced in the previous Chapter 2, as the objective of the Causal Discovery
task, resembles a blue print that one can simply draw on a white sheet of paper, but what’s the pre-
cise meaning behind the ”arrows” (→ or← in the directed graph) it can tell us? Figure it out this
point becomes important when it comes to talk about machine learning techniques, in part because
these statistical tools may be expected to interpret their judgment on causal directions for good rea-
son (e.g. 𝑥𝑖 → 𝑥 𝑗 or vice versa). Hence, assuming a guideline at a high level is required.

Reminder: Several friendly hooks here helping direct you back to the previous Chapter 2, the next Chapter 4,
the table of Contents, or the Reading Guidance of This Report for Different Audiences.

3.1 The Beuchet Chair Optical Illusion

Take an example in description of the causal relationship between the objects’ position (𝑋) and their
vision imaging (𝑌) perceived by our brains (𝑋 → 𝑌). By the Beuchet Chair shown in Figure 3.1 we
find that, given the right panel of the picture, our perception can go wrong if we posit such a single,
carefully aligned, and very special vantage point to look at the chair (the two separated objects, in
fact) — whereas most of time our vision perception holds well.

Figure 3.1: Beuchet chair, made up of two separate objects (left panel) that appear as a chair (right panel) when
viewed from a single, carefully aligned, and very special vantage point (Image courtesy of Markus Elsholz, reprinted
from “Causality for machine learning” (Schölkopf, 2022)).

8
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Intuitions about most of the prerequisite for Causal Discovery algorithms is to either rule out
such abnormal conditions (e.g. akin to the special vantage point) or reinforce normal mechanism
(e.g. akin to the independent function of vision imaging, regardless the objects’ position). Thus,
moral of the Beuchet Chair can involves detailed discussion on the mainstream Causal Assumption,
such as the Markov Assumption, the Minimality Assumption, the Faithfulness Assumption (Spirtes
et al., 2000) (Causation, prediction, and search, Section 2.3, 3.4); the Causal Stability (or Perfect Map-
ness) Assumption (Pearl, 2009)(Causality, Section 2.3, 2.4); and the Assumption of Independence of
Cause and Mechanism (ICM) (Peters et al., 2017)(Elements of causal inference, Section 2.1, 4.1).

It’s unlikely to dive deep enough for so many aforementioned points in an introductory report; yet it
may be a good start that leads to my opinions in this report shown in the following relative sections:
”DataGeneration Process” and ”DataGenerationMechanism”, which culminatingwith the basic insights
relative to profound idea in Causal Discovery, namely to assume a kind of stable independency.

3.2 Causal Models

One way to lift up our viewpoint against learnable causal relationships, is to mathematically set up
a parametric model that supplements a kind of ”precise granularity” to the coarse Causal Graph
𝒢𝑿 . By granularity I mean the model specification regarding how each variable 𝑥𝑖 (as an effect) is
precisely affected by its parent(s) 𝑝𝑎(𝑥𝑖) (as a cause) in the Directed Acyclic Graphs (DAGs).

Reminder: Several friendly hooks here helping direct you back to the previous Section 3.1, the next Section 3.3,
the current Chapter 3, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

3.2.1 Mathematical Formalization

To this end, imagine a set of compatible parameters (denoted as Θ𝒢𝑿 ) storing the arbitrary map-
ping of functional relationships that Nature imposes between 𝑥𝑖 and 𝑝𝑎(𝑥𝑖) in the Causal Graph 𝒢𝑿 ,
leading to a pair of 𝑀𝑿 (referred to as the Causal Model (Pearl, 2009)) that

𝑀𝑿 = < 𝒢𝑿 ,Θ𝒢𝑿 > . (3.1)

Specifically, one can view Θ𝒢𝑿 as irreversible mapping (thus denoted as ’:=’ instead of ’=’) that

Θ𝒢𝑿 = { 𝒇 (𝑿 , 𝜺) | 𝑝𝑎(𝑥𝑖) := 𝑓𝑖(𝑥𝑖 , 𝜀𝑖)}, (3.2)

where symbol 𝜺 = {𝜀1 , 𝜀2 , . . . , 𝜀𝑑} indicate the arbitrary (yet mutually independent) disturbance
that we assume Nature intend to impose and thus perturb the (originally stable) causal relation-
ships between 𝑥𝑖 and 𝑝𝑎(𝑥𝑖). It doesn’t necessarily to keep Equation 3.1 and 3.2 in mind, as I will
(implicitly) provide associated instances bit by bit in the rest of this Chapter; let’s now quickly turn
to the intuition and the rationale behind the Causal Model.

3.2.2 Intuition and Rationale

Notice that if it is possible for humans to inductively learn a structure that represents data, it may
simultaneously justify the presence of a hidden process and mechanism, by which Nature probably
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”reason” these raw data in the very beginning. Let me make it more clear: We assume Nature inher-
ently possesses the Causal Model (shown in Equation 3.1) — an omniscient perspective for Nature
but ignorant for us — that allows it to generate the raw data.

The advantages of establishing the Causal Model are at least three-fold in this report:

• First and foremost, specifying the complexion of the ”arrow” gives us a sufficient space to
discuss which form of the Causal Assumption should be satisfied as prerequisite.

• Secondly, the double-tuple CausalModel hints at the hybrid-based algorithm framework intro-
duced in this report, which covers both a causal structure as well as its functional composition.

• Regarding the moral of encapsulating the uncertainty or ”disturbance” in the Causal Model,

* it involves one of the most insightful opinion that spreads over the causation realms (e.g.
Causal Discovery, Intervention, Counterfactuals) (Pearl, 2009)(Causality, Section 7.1);

* it is consistent with the classic causal notion in description of a ”pesudo indeterministic
system” (Spirtes et al., 2000) (Causation, prediction, and search, Section 2.5).

3.3 Data Generation Process

As part of the Causal Model (𝑀𝑿) shown in Equation 3.1, Directed Acyclic Graphs (DAGs) (could
be donated as 𝒢𝑿 in 𝑀𝑿) are actually in itself a generic-yet-weak structural assumption on the data
generation process, in part because by the DAGs one may tell how the data is generated in order.

Reminder: Several friendly hooks here helping direct you back to the previous Section 3.2, the next Section 3.4,
the current Chapter 3, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

3.3.1 A Classic Example: Water Flows in a Pipe

To figuratively understand how different orders affect a processing system (Spirtes et al., 2000; X.
Chen, 2024), consider a piece of water pipe system, where 𝑖, 𝑗, and 𝑘 are three of its junctions and
each one has a valve-switch available to be controlled. Hence, given the direction of water flowing as
a ”chain” path 𝑖 → 𝑘 → 𝑗 or a ”fork” 𝑖 ← 𝑘 → 𝑗 path, one can ”deactivate” the connection between
the junctions 𝑖 and 𝑗 (or specifically the water flow here) by turning off the valve at the junction 𝑘.

In contrast, given the direction of water flows as an ”inverted-fork” path 𝑖 → 𝑘 ← 𝑗, one may found
that the connection between the junctions 𝑖 and 𝑗 could be ”activated”, if one suddenly turns off the
the junction 𝑘 (or its ”downstream” parts) that is (are) initially supposed to be turned on in order to
let the water flow pass. This ”activation” is alarming and should not be permitted in reality, as two
currents are colliding with each other at the junction 𝑘, which may cause the pipe to burst!.

3.3.2 Patterns of Conditional Dependence-and-Independence

From the example we find that, ”deactivating” the existing water flow creates a pattern of ”con-
ditional independence”. Here, the ”condition” refers to purposely turn off the valve. Conversely,
”activating” the non-existing crash of water flow is akin to a result of ”conditional dependence”.
Such phenomena cover broadly the every-life events, if we interpret the directionality that is embed-
ded in causal relationships is operating just as the same one in the flow of water.
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Let’s envision the causal information carried smoothly by a sequence of events, where at the middle
of the process some events serve as mediators. Similarly to cut off the flow of water, interrupting a
crucial mediator destroys the conductivity from cause to effect, leading to a state of independency.

It’s worth noticing that, however, intentionally manipulating a ”collider”, as we have seen in the
water flow example, also ignites a kind of ”unfriendly” dependency in events. For instance, inde-
pendently flip two coins (𝑋1, 𝑋2) for 100 times, record the results, and rang a bell (𝑌 = 1) only when
the result are tail (e.g. 𝑋1 = 1 or 𝑋2 = 1). If after experiment one only looks at the records with a
bell-ranging, it’s undoubtedly (yet kind of silly) that the two coins are correlated! In other words,
there is fundamentally no any causal rationale behind such conditional dependency.

3.3.3 Statistical Patterns, Directed Graphs, and Machine Learning

In fact, both conditional dependence and independence are the statistical terminology that charac-
terize how two variables are connected or disconnected, given the third variable. The notion of Con-
ditional Independency (CI) has been maintained as ”the heart in causal modeling” (Pearl, 2009). If
it’s not easy to directly discover the causal relationships, alternatively mining the patterns relative to
conditional dependence-and-independence is for good reason. This is because, from the perspective
of data generation process, one can view these statistical patterns as the ”by-product” of causation.

In terms of the data generation process entailed by Directed Acyclic Graphs (DAGs), let’s consider a
simple directed structure 𝑥𝑖 → 𝑥𝑘 → 𝑥 𝑗 , for instance. The data generation process can be viewed as:
from the exogenous nodes 𝑥𝑖 influenced by factors outside of the system, through the endogenous
node 𝑥𝑘 shaped by the system itself, all the way to the leaf nodes 𝑥 𝑗 that represent the ultimate data
points the system processes. In fact, it is such type of causal interpretation that eventually results in
the ubiquity of DAGs models in machine learning applications (Pearl, 2009).

Transferring the above moral into DAGs, to better understand its generation process under certain
control, one may be able to draw an analogy between the ”activated connections” among nodes in
the context of DAGs, and the ”conditional dependency” among random variables in the context of
probability and statistics. By the same token, ”deactivated connections” in DAGs are closely linked
to the ”Conditional Independency (CI)” in probability and statistics.

Mathematics for the relationships between graphs and probability are summarized as the machine
learning technique referred to as Probabilistic Graphical Model (PGM) (Koller, 2009). I here only
interpret its elementary insights through the lens of Causal Discovery in this report.

3.3.4 Structural Insights with D-Separation

Keeping this instance of one-way data generation process, as 𝑥𝑖 → 𝑥𝑘 → 𝑥 𝑗 top-down through the
DAGs, is helpful to grab the crucial idea namedD-Separation (”D” refers to ”directed”) (Pearl, 2009)
that the causality-provoked Probabilistic Graphical Model (PGM) (Koller, 2009) rests on. The D-
Separation criterion can best be recognized if one attributes causal meaning to the arrows consisting
of paths (a sequence of consecutive edges) in the DAGs (Pearl, 2009; Pearl et al., 2018).
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DEFINITION (INFORMAL)

The D-Separation Criterion: Two disjoint sets of nodes 𝑿 𝑖 and 𝑿 𝑗 in the DAGs are
said to be directedly separated given another disjoint sets 𝑿 𝑘, if and only if the
connection between 𝑿 𝑖 and 𝑿 𝑗 is

1. "deactivated" by including all the chain-fork path, where

(a) 𝑿 𝑖 → 𝑿 𝑘 → 𝑿 𝑗 (chain path, or 𝑋𝑘 is a mediator),
(b) 𝑿 𝑖 ← 𝑿 𝑘 → 𝑿 𝑗 (fork path, , or 𝑋𝑘 is a confounder);

2. NOT "activated" by including all the (generic) inverted-fork path, where

(a) 𝑿 𝑖 → 𝑿 𝑘 ← 𝑿 𝑗 (inverted-fork path, or collider 𝑋𝑘, or V-Structure),
(b) 𝑿 𝑖 → 𝑐ℎ(𝑿 𝑘) ← 𝑿 𝑗, and 𝑐ℎ(𝑿 𝑘) refers to the child or descendant of 𝑿 𝑘.

This brings us to the most important place in this section. If one doesn’t have something like the
D-Separation criterion available to be checked or be informed, he or she may have no idea about how
to use the conditional dependence-and-independence — patterns recognized by machine from data
— to re-construct a graph that is assumed to represent the data.

Instead, according to the D-Separation criterion, the Conditional Independency (CI) is categorized
as a state permitting separation between two sets of nodes that is formed in the DAGs (e.g. chain
path, fork path), whereas the conditional dependency is classified as a ”non-separated” state that
implies a V-structure (inverted-fork path or collided path) in the DAGs.

3.3.5 Markov/Minimality Properties: Necessary and Sufficient Conditions

As a result of aforementioned discussion, statistical implications of the D-Separation criterion lead
to the Markov Assumption (Pearl, 2009)(Spirtes et al., 2000). One may have heard about the famous
saying from temporary circumstances that, ”The future is independent of the past, given the present mo-
ment”, where the context of time is absolutely one-way and directed. This requirement can be also
well applied to the context of one-way data generation process embedded in the Directed Acyclic
Graphs (DAGs), which machine learning techniques on Causal Discovery are anticipated to meet.

CAUSAL PREREQUISITE (INFORMAL)

Causal Markov Assumption: The D-Separation implications for 𝒢𝑿 (DAGs) in 𝑀𝑿 (Causal
Model) compatibly lead to conditional independence that distribution 𝑃(𝑿 ) satisfies:

𝑃𝒢𝑿 (𝑿 ) : (𝑿 𝑖 ⊥⊥ 𝑿 𝑗 | 𝑿 𝑘)𝒢𝑿 ⇔ (𝑿 𝑖 ⊥⊥ 𝑿 𝑗 | 𝑿 𝑘)𝑃(𝑿 ) , (3.3)

The Markovian compatible distribution is thus denoted as 𝑃𝒢𝑿 (𝑿 ). Notice that in
causality, we always use the symbol "⊥⊥" to denote the state where a variable is
"independent" of the other (and thus ⊥̸⊥ for dependence).

Equation delineates the following compatible circumstance: if (in the context of graphs) a vari-
able 𝑥𝑖 is d-separated from its non-descendant 𝑥 𝑗 given the parent(s) 𝑝𝑎(𝑥𝑖), then (in the context
of probability) the variable 𝑥𝑖 is independent of its non-descendant 𝑥 𝑗 given the parent(s) 𝑝𝑎(𝑥𝑖).
Readers may find it easier to read when respectively replacing variable 𝑥𝑖 , non-descendant 𝑥 𝑗 , and
parent (s) 𝑝𝑎(𝑥𝑖), with the ”future”, the ”past”, and the ”present moment” — if they will.
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One may know that one of defining feature of the Bayesian Network (BN) lies in its capability to
represent the joint distribution with a sparse network structure. From the perspective of the Markov
Assumption, this is because storing the information of Conditional Independency (CI) helps remove
unnecessary connections in the structure. More fundamentally, from the perspective of causation,
it providing a ”necessary” condition to test and remove the dependence that are not genuine causal
relationships — for example, the dependence that is induced by a existing chain-path (e.g. there is
a mediator) or fork-path (e.g. there is a confounder) (mentioned in Section 3.3.4).

Given this sense, in order to further ensure that the remaining statistical dependence can be thus
consistently interpreted as the genuine causal relationship, a ”sufficient” condition (X. Chen, 2024),
referred to as the Minimality Assumption (Pearl, 2009) (Spirtes et al., 2000), is required.

CAUSAL PREREQUISITE (INFORMAL)

Causal Minimality Assumption: Minimizing the total amount of possible Conditional
Independency (CI) until all of them are only implied by the Markov Assumption.

Generally, making it clear that — a combination of the Markov Assumption and the Minimality
Assumption in Causal Discovery roughly operates in a way resembling a necessary and sufficient
condition — is enough for the causal intuition I want to share in this Section.

Specifically, the Minimality Assumption can be further understood by three folds: (1) ”Minimality”
equally means to maximize the independence implied by the Markov Assumption, since additional
independence raised exclusively from theMarkovAssumption is deemed to be non-causal. (2)Mini-
mality entails a sense of ”simplicity”, whichmeans if two structureswell represent the same data, the
simple one is preferable. (3) From the perspective of the Causal Model, the Minimality Assumption
is established at the level of graphs 𝒢𝑿 . A stricter version established at the level of parameters Θ𝒢𝑿
is commonly referred to as the Faithfulness Assumption or Causal Stability (or Perfect Mapness).

3.4 Data Generation Mechanism

We now turn to the other part of the Causal Model (𝑀𝑿) mentioned in Equation 3.1, where the com-
position of causal parameters Θ𝒢𝑿 (e.g. functional relationships and unmeasurable disturbance)
actually has possessed an inherent assumption on the mechanism by which the data is generated.

Reminder: Several friendly hooks here helping direct you back to the previous Section 3.3, the next Section 3.5,
the current Chapter 3, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

3.4.1 An Classic Example: Temperature and Altitude

Let me start explaining my opinion by borrowing another simple example of Causal Discovery (Pe-
ters et al., 2017) that describes the relationship between temperature (𝑇) and altitude (𝐴), where we
all agree that a change (decrease) in temperature results from an increase in altitude:

Δ𝑇 ← 𝐴. (3.4)
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Considering the ”precise granularity” of this model, or its generation mechanism, let me explicitly
describe their relationships in a physical equation:

Δ𝑇 = −𝐿 · 𝐴, (3.5)

where 𝐿 refers to the Lapse Rate (a parameter indicating the average rate of temperature decrease
with altitude), serving as the major function that converts the influence from 𝐴 and conveys it to 𝑇.

As I mentioned in the previous Section 3.3 ”Data Generation Process”, one can obviously point out
that Equation 3.4 itself almost depicts a simplest bi-variable Directed Acyclic Graphs (DAGs), de-
noted as 𝒢{𝑇,𝐴}, in the context of probability. That is, one can estimates the joint distribution 𝑃(𝐴, 𝑇)
from data samples collected in the different cities in different countries.

3.4.2 Differentiating Natural Causation from a Physical Equation

When it comes to the data collection in real environment, however, it’s worth noticing that consider-
ing other factors responsible to the change in𝑇 —thoughminor but still conceivable—will make the
data generation process more ”natural” (as opposed to ”ideal” or ”without being erroneous”). Such
factors might include atmospheric pressure (𝑃) and humidity (𝐻) processed by an unmeasurable
physical mechanism 𝜎(·), leading us to a more tolerant and nuanced transformation that

Δ𝑇 = −𝐿 · 𝐴 + 𝜎(𝑃, 𝐻). (3.6)

Distinguishing Equation 3.5 from 3.6 is important since the later characterizes something unexpected
but inevitable when one samples data from the real world, which thus differentiates data generation
followed by causal relationships from the one by purely physical description.

3.4.3 Inspiration from Physically Independent Mechanism in the Real World

Since we are talking about how to learn causal relationships in this report, our focus consists in the
insights that we can draw from the data generation processed through physical mechanism.

Aside from the constant 𝐿, in Equation 3.6 one can tell that several trivial factors during a physical
generation process, such as 𝑃 and 𝐻, are always in place and lead to an influence on 𝑇, independent
of 𝐴, or the city from which one choose to sample the data and form the distribution.

For example, during a process where one designs control-experiment in different regions to measure
how temperature would change given a change in altitude, the mechanism (𝜎(·)) or the physical way
by which the ubiquitous atmospheric factors participate in the process, is basically the same — irrel-
evant to whether one choose to record 𝑇 and 𝐴 in Los Angeles or in Beijing (uh...as long as he or she
conducts the experiment on Earth).
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DEFINITION (INFORMAL)

Physically Independent Mechanism: A causal generative system akin to the system
consisting of input-output modules (without feedback), where each module satisfies:

1. input → mechanism → output
2. mechanism = causal mechanism (major) ∪ physical mechanism (minor)
3. changing an input makes NO impact on mechanism, in particular the physical one

Imagine an input-output relationship is conductive to further comprehend thewell-knownCausal
Assumption, Independence of Cause and Mechanism (ICM), made on data generation mechanism.

3.4.4 Independence of Cause and Mechanism: Intuition of Causal Asymmetry

The assumption of Independence of Cause and Mechanism (ICM) is a bi-variable version of the
Physically Independent Mechanism, simplified with cause-and-effect relationships.

CAUSAL PREREQUISITE (INFORMAL)

Independence of Cause and Mechanism (ICM): Given two of the distribution associated
with the cause-and-effect relationship (denoted as 𝑃(𝐶) and 𝑃(𝐸)), 𝑃(𝐶) is independent
of the conditional distribution of variable 𝐸 given its cause 𝐶:

𝑃(𝐶) ⊥⊥ 𝑃(𝐸 | 𝐶). (3.7)

Here the conditional distribution 𝑃(𝐸 | 𝐶) can be interpreted as the minor mechanism,
where the majority of causal information has been moved (conditioned) from the effect.

Notice that in causality, we always use the symbol ”⊥⊥” to denote the state where a variable is
”independent” of the other (and thus⊥̸⊥ for dependence).

A Thought Experiment on the Reverse Situation

Assuming the existence of Independence of Cause and Mechanism (ICM) entails an uniquely in-
sightful property featured as Causal Asymmetry. To illustrate this, one just need to do a thought-
experiment relative to the temperature-altitude example. Hypothesizing a reverse structure 𝑇 → 𝐴

this time, suppose one is then asked to picture a situation (Peters et al., 2017), where the altitude of
a city dropped after a huge heating system was built around the city to raise the temperature. Not
surprisingly, people would have a hard time thinking of such a reverse (and weird) situation.

At least the moral of this thought-experiment is straightforward: In order to distinguish between
a result and a cause, one should comprehend that intervening the result can never affect the cause
— only the opposite is absolutely true.

Causal Intervention

What the assumption of Independence of Cause and Mechanism (ICM) accounts for the aforemen-
tioned phenomenon is that, our cognition tend to be more adaptive to envision a consequence over
a causal direction (Pearl et al., 2018; X. Chen, 2024) instead of an anti-causal one.
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Whenwe can quickly envision how the temperature in response to a rise of altitudewithout climbing
the to mountain top in person, chances are, we have mentally (and often unconsciously) completed
an intervention during this process. The independency of the mechanism implied by a causal di-
rection retains the influence of those uncertain physical factors when a new change happen, thus
enabling us to safely change the input (cause), and effortlessly predict the output (effect).

In contrast, when we have a hard time thinking over an anti-causal direction, it may imply that such
mechanism is volatile, obscured, or even doesn’t exist with a physically deterministic form. In Na-
ture, temperature’s change along with the seasonal switch can barely have an impact on an area’s
altitude, unless it’s coinstantaneous to extreme events, such as the continental drift or the rise of sea
level. Nevertheless, once such rare likelihood occurs, it showcases by no means the independency
between its cause and (its associated) physical mechanism.

3.4.5 Explanation for Causal Asymmetry with Machine Learning

As a result, an interested point taken from the machine learning perspective is that, unlike the Inde-
pendence of Cause andMechanism (ICM) relative to the bi-variable relationship, one can barely talk
about the machine learning techniques such as Probabilistic Graphical Model (PGM) without the
presence of a ”third-party”. The D-Separation criterion I mentioned in the previous Section 3.3.4, for
instance, delineates how the two sets of variables are counted as ”blocked”, given another disjointed
variable set existing in the Directed Acyclic Graphs (DAGs). According to the Causal Assumption in
Equation 3.7, the assumption of Independence of Cause and Mechanism (ICM) could be technically
tested by regression-based machine learning techniques:

𝑃(𝐴) ⊥⊥ 𝑃(𝑇 − �̂� · 𝐴), (3.8)

if one applies Linear Regression (LR) over the recorded data to obtain an estimation of �̂� concerning
the lapse rate, and calculates 𝑃(𝑇− �̂� ·𝐴) to approximate the conditional distribution 𝑃(𝑇 | 𝐴) (accord-
ing to Equation 3.7) that represents the effects of the independent mechanism 𝜎(𝑃, 𝐻). At the same
time, the Linear Regression (LR) can certainly be applied on a reverse direction, but it may probably
left the machine with a ”hard time” to fit the data, given the intuitive asymmetry we mentioned.

One may argue that it’s straightforward to obtain the reversed relationship (Equation 3.6) as 𝐴 =
−Δ𝑇+𝜎(𝑃,𝐻)

𝐿 , by swapping the variables𝑇 and 𝐴 on both side of the equality sign. Notice that, however,
in our context I implicitly assumed the linear functional relationship (by a constant Lapse Rate) be-
tween𝑇 and𝐴, and have not yetmade any explicit formof 𝜎(𝑃, 𝐻) relative to the physicalmechanism.
These considerations are, in fact, crucial, when it comes to the practical feasibility of using regression-
basedmachine learning techniques to discover causal relationships, since the causal mechanismΘ𝒢𝑿
encompassed by the generic Causal Model (I mentioned in Section 3.2) may be a (massive) set of
parameters needed to be determined (in a more complex multivariate circumstance). Details about
this point are left for some interested technical readers in Chapter 4, ”Literature Review”.
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3.5 A Holistic Review Based on Bayesian Networks

This section is meant to additionally clarify some relevant notions in causality, in particular echoing
to the Bayesian Network (BN) mentioned in Chapter 2, ”A View Based on Bayesian Networks”.

Reminder: Several friendly hooks here helping direct you back to the previous Section 3.4, the next Chapter 4,
the current Chapter 3, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

3.5.1 Data Generation Process: Markov Compatibility

One defining feature of the BN, in terms of its graphical structure, is to facilitate economical repre-
sentation (Koller, 2009) of the joint distribution 𝑃(𝑿 ) over variables, as shown in Equation 3.9.

𝑃𝒢𝑿 (𝑿 ) =
∏
𝑥𝑖∈𝑿

𝑃𝒢𝑿 (𝑥𝑖 | 𝑝𝑎(𝑥𝑖)), (3.9)

where for any two of variables 𝑥𝑖 and 𝑥 𝑗 , the distribution 𝑃(𝑥𝑖 | 𝑝𝑎(𝑥𝑖)) is independent of the one
𝑃(𝑥 𝑗 | 𝑝𝑎(𝑥 𝑗)), also concisely denoted as ”𝑃(𝑥𝑖 | 𝑝𝑎(𝑥𝑖)) ⊥⊥ 𝑃(𝑥 𝑗 | 𝑝𝑎(𝑥 𝑗))”. The symbol 𝑃𝒢𝑿 further
indicates the Markov Compatibility that serves as a condition for a (causal) BN to capture a stochas-
tic process capable of generating 𝑃(𝑿 ) (Pearl, 2009). Ascertaining this compatibility is important,
because it enables us to model the relationships between graphs and probabilities

DEFINITION (INFORMAL)

Markov Compatibility: A joint distribution 𝑃(𝑿 ) is said to be compatible with a
Directed Acyclic Graph 𝒢𝑿, if and only if 𝑃(𝑿 ) implies the independency decomposition
(shown in Equation 3.9) relative to 𝒢𝑿, and thus can be denoted as 𝑃𝒢𝑿 (𝑿 ).

Moreover, such independency decomposition, or probabilistic factorization with in terminology,
can be in fact alternatively, and thus conveniently, approached by listing a table of the Conditional
Independency (CI) relationships that the Markov compatible distributions are anticipated to satisfy,
according to the D-Separation criterion mentioned in Section 3.3.4. In short, the Markov Compatibil-
ity provides the rationale regarding the (structural) data generation process for a machine learning
technique to identify; the D-Separation criterion helps the Causal Discovery algorithm realize the
computational feasibility when mining those CI patterns.

Finally, even ensuring the the Markov Compatibility, there may still remain an unbounded num-
ber of the (causal) BN that can fit a given distribution. This makes it for good reason to impose a
structural restriction such as the Minimality Assumption and/or a parametric restriction such as the
Faithfulness Assumption, which were briefly mentioned in Section 3.3.5.

3.5.2 Data Generation Mechanism: Autonomy and Intervention

Considering the Causal Model as a whole, one can combine Equation 3.6 with (the prior struc-
ture 𝒢{𝑇,𝐴} in) Equation 3.4 to obtain a simple bi-variable instance of the Causal Model (denoted
as 𝑀{𝑇,𝐴}) in relation to the example mentioned in Section 3.4.1, as shown in Equation 3.10 that

𝑀{𝑇,𝐴} = < 𝒢{𝑇,𝐴} ,Θ𝒢{𝑇,𝐴} >, (3.10)
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where Θ𝒢{𝑇,𝐴} = {𝐿, 𝜎(𝑃, 𝐻)} involves compatible parameters entailed by Equation 3.6. From the in-
stance we can now perceive that there is a property of the Independence of Cause and Mechanism
(ICM) that serves as a principle implicitly assumed by the bi-variable structure 𝒢{𝑇,𝐴}.

Moreover, the insights into Physically Independent Mechanism in Nature and the physical world
are not exclusively applied in Causal Discovery. In contrast, it closely involves other crucial con-
cepts in the realms of causation. For example, assuming such independency grants a causal BN 𝒢𝑿
(in Equation 3.1) the capability of making response to external changes with just economical modifi-
cation over its network structure (Pearl, 2009). This is in part because, roughly speaking, the network
connections that are physically glued by causation are more likely to be considered as robust, stable,
and thus needless to (too much) training or adaptation. Technically, the implications of Physically
Independent Mechanism coherent to the causal BN’s properties are at least two aspects:

1. Autonomy: It facilitates deterministic relationships resembling from inputs to outputs, which
distinguishes the causal BN from the regular BN. For example, unlike regular Bayesian tech-
niques such as Brief Propagation (Koller, 2009) that blindly spreads over the entire network,
the independency of mechanism entails local autonomy (Peters et al., 2017)(Pearl, 2009).

2. Intervention: Unimpacted mechanism enables a causal BN to estimate effects the Intervention
(Peters et al., 2017) by truncated probabilistic factorization (with 𝑑𝑜 calculus)(Pearl, 2009).

Diving into this point leads us to the high-level semantics in ares of causation such as (Structural)
Intervention and (Structural) Counterfactuals, which goes beyond the scope (statistical causal dis-
covery) in this report. Interested readers may refer to the relevant literature for more information.



4
LITERATURE REVIEW

Background narration and methodology delineation about the state-of-the-art approaches — classic
Non-Temporal causal discovery algorithms in Section 4.1 — are relatively and partially summarized
from one of my undergrad research work “A Survey on Causal Discovery with Incomplete Time-
Series Data” (X. Chen et al., 2023a). Additionally, in order to unify the one of the causal discovery
methodology developed initially by the DMIR (Data Mining and Information Retrieval) lab that I
worked for, Section 4.2 further teases out the algorithms that rely on hybrid-based frameworks —
the framework inwhichmerits of the classic causal discovery algorithms in Section 4.1 are integrated.

While the Chapter in this report adopted relatively informal language and flexible structure, it’s still
written for technical readers — including experts, faculty, and/or employers — who wish to make
assessment (regarding field knowledge and specialization) on my undergraduate research work.

Reminder: Several friendly hooks here helping direct you back to the previous Chapter 3, the next Chapter 5,
the table of Contents, or the Reading Guidance of This Report for Different Audiences.

4.1 State-of-the-art Approaches for Causal Discovery

4.1.1 The SGS, PC and FCI Algorithms

Background Narration

In the early 1980s, researchers like Glymour and Spirtes developed efficient causal discovery algo-
rithms that utilize statistical patterns of (conditional) independence and incorporate the (structure)
completeness through philosophical logic rules.

The methodology leveraging the Conditional Independence Test (CIT), known as the constraint-
based approach, extends structural learning methods for the Bayesian Network (BN) within causal
significance constraints. The machine learning intuitions as to this track of causal discovery algo-
rithms can be found in Section 3.3 ”Data Generation Process” in this report.

Methodology Delineation (In light of My Personal Critique)

Given the assumption of Causal Sufficiency (Spirtes et al., 2000) — causal discovery without the
presence of latent variables (Latent Confounder) — fundamental approaches encompass the SGS
(Spirtes-Glymour-Scheines) algorithm and the PC (Peter-Clark) algorithm (Spirtes et al., 2000).

19
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Equation (4.1) represents the (notion/idea/strategy of the) CIT (in causal discovery): For any ex-
tant variable pair 𝑥𝑖 , 𝑥 𝑗 , the algorithms will test their correlation (e.g. whether 𝑥𝑖 , 𝑥 𝑗 are correlated
or independent of each other) condition upon (every subset consisting of the) variables other than
𝑥𝑖 , 𝑥 𝑗 within the observed variable set 𝑉 .

𝐶𝐼
(
𝑥𝑖 , 𝑥 𝑗 | 𝑠𝑢𝑏𝑠𝑒𝑡

(
𝒙𝑉\{𝑥𝑖 , 𝑥 𝑗}

))
. (4.1)

Since it’s possible to have multiple causal structures that can share identical Conditional Indepen-
dency (CI) patterns (Spirtes et al., 2000) (aka. the Markov Equivalent Classes (MECs)), leading to
partial orientation, namely some of the edges in the graph cannot be oriented to the arrows. This
brings us to a notion named the Partially Directed Acyclic Graphs (PDAGs) that are relative to the
Directed Acyclic Graphs (DAGs). So the goal (of the constraint-based approach) is to construct the
MECs over the PDAGs, also known as the Completed Partially Directed Acyclic Graphs (CPDAGs).

Constraint-based methods rely on the Markov Assumption and the Faithfulness Assumption (with
the assumptions’ intuitions mentioned in Section 3.3.5 ”Markov/Minimality Properties: Necessary and
Sufficient Conditions”, decomposing the learning process into two stages:

1. The skeleton learning stage relative to the Un-directed Graphs (or are referred to as the MRF,
Markovian Random Field (Koller, 2009))

2. The orientation stage based on the ”V-structure” (I’ve mentioned in Section 3.3.4 Structural
Insights with D-Separation in this report) and the logic rules, relative to the DAGs

Commencing with a complete graph, execution of CIT eliminates redundant edges between pair-
wise variables, yielding a causal skeleton. The algorithms then orient the edge direction mainly in
light of the V-structure provided by the condition (D-Separation) set, ultimately leading to CPDAGs.

In terms of systems that fail to satisfy the Causal Sufficiency assumption, the mainstream approach,
represented by the FCI (Fast Causal Inference) algorithm (Spirtes et al., 2000), is adopted and proven
to be theoretically correct, sound, and complete. The FCI algorithm is an extension of the PC algo-
rithm,which introduces the concept ofMaximalAncestral Graphs (MAGs) andPossibleD-separation
Set (Possible-Dsep Sets) to aid in respectively representing the causal graphs and testing conditional
independence in the presence of latent confounders. On one hand, similar to the PC algorithm, the
FCI algorithm also employs the V-structure and the logical rule to determine causal direction over
MAGs, leading to the search of Partially Ancestral Graphs (PAGs) that are analogous to PDAGs.

4.1.2 The CAM, LiNGAM, and ANM Algorithms

Due to the inherent challenges of Markov Equivalent Classes (MECs), structural uniqueness is still
not guaranteed. Aside from imposing the Markov Assumption and the Faithfulness Assumption
on the data generation process, the other track in mainstream causal discovery methodologies as
mentioned in Section 3.4 typically resort to for a finely grained expression of causal relations.

Background Narration

Roughly starting in 2005, researchers including Hoyer and Shimizu developed a new scheme for
inferred causation, which making delicate assumptions on the functional composition relative to a
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deterministic causal relationship. By functional composition I mean a well-known subclass relative
to the CausalModel, referred to as the Causal AdditiveModels (CAMs) (e.g. literally indicating that
the composition of functional influence that imposes on a variable is additive).

The core of methods (in such categories), is known as on the basis of Structural Causal Models
(SCMs) or Functional Causal Models (FCMs) (in causal terminology), which interprets a causal
system as a series of special equations— each of them explains the generation of variables as a result
of their direct causes and independent noise terms, mapped through an irreversible causal function.
Moreover, if researchers wish to explicitly discover causal relationships only from observational data
while at the same time to ensure that the learned causal structure is unique, then additional assump-
tions must be added to the SCMs or FCMs. Similar to the constraint-based approach mentioned
in the previous Section 4.1.1, the machine learning intuitions as to this track of Causal Discovery
algorithms can be found in Section 3.4 ”Data Generation Mechanism” in this report.

Methodology Delineation (In light of My Personal Critique)

One typical assumption imposedupon SCMs reads the Linear non-GaussianAcyclicModel (LiNGAM)
(Shimizu et al., 2006; Shimizu et al., 2011), which relies on the non-Gaussianity of noise. The basic
idea of the LiNGAM is that the asymmetry (a kind of geometric constraint) inherent in the non-
Gaussian noise mathematically allows for the causal identification that traditional Linear Gaussian
Bayesian networks cannot achieve. In the LiNGAM, the SCM is represented as follows:

X := 𝐵X +N or 𝑥𝑖 :=
∑
𝑖≺ 𝑗

𝛽𝑖 𝑗𝑥 𝑗 + 𝜀𝑖 . (4.2)

where 𝐵 and N (or 𝛽𝑖 𝑗 and 𝜀𝑖) represent the lower-triangular causal adjacency matrix (or causal
strength coefficients from 𝑥 𝑗 to 𝑥𝑖 thereof), namely the FCMs graphical structure in form of the ma-
trix, and the non-Gaussian independent noise vector that together generate the observed variable
vector X (or 𝑥𝑖). The mainstream methods for solving the LiNGAM include two categories:

• The first category equivalently transforms the LiNGAM into a standard linear Independent
Component Analysis (ICA) model (e.g. X := (𝐼 −𝐵)−1N⇒ X := 𝐴N), and uses corresponding
statistical techniques to solve this linear system (Shimizu et al., 2006).

• The second category directly resorts to least squares estimation or maximum likelihood esti-
mation methods to search for the most reasonable causal ordering (Shimizu et al., 2011).

The other typical form is the Additive Noise Models (ANMs) (Hoyer et al., 2008), which constrains
the FCMs by the third derivative of nonlinear function 𝑓 , along with a broader summary(Bühlmann
et al., 2014) (namely the Causal Additive Models (CAMs) mentioned early in this section):

𝑿 := 𝑓 (𝑷𝑨𝑿 ) + 𝑵 , (4.3)

where 𝑷𝑨𝑿 and 𝑵 respectively represent the direct parents of the observed variable vector 𝑿 and
the corresponding (additive) Gaussian or non-Gaussian independent noise that together generate
𝑿 . It’s crucial to point out that, both aforementioned CAMs variants (LiNGAM and ANMs) are
implicitly complyingwith the assumptions of Physically IndependentMechanism and Independence
of Cause and Mechanism (ICM) mentioned in Section 3.4.4 ”Independence of Cause and Mechanism:
Intuition of Causal Asymmetry”, which are thus commonly referred to as the ”Independence-Noise-
Based approaches” (just meaning the same as ”Independence-Mechanism-Based approaches”).
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4.2 Hybrid-based Approaches for Causal Discovery

In this section, I will informally introduce three hybrid-based causal discovery methodologies orig-
inally developed by the DMIR (Data Mining and Information Retrieve) laboratory. Hybrid-based
causality approaches are particularly proposed to address the issues in relation to large-scale and
high-dimensional causal discovery that traditional methods may fail to approach.

Reminder: Several friendly hooks here helping direct you back to the previous Section 4.1, the next Chapter 5,
the current Chapter 4, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

4.2.1 Framework Overview

To begin with a big picture, it may be helpful for one to view the basic algorithmic behaviors adopted
by the hybrid-based approaches in generally two steps:

1. Implement a strategically graphical decomposition based on the data generation process as-
sumption mentioned in Section 3.3 and the algorithmic rationale mentioned in Section 4.1.1.

2. Iteratively or repeatedly apply causal inference over each of the subgraph (resulted from the
global graphical decomposition) based on the data generation mechanisms assumption men-
tioned in Section 3.4 and the algorithmic rationale mentioned in Section 4.1.2.

Three representative hybrid-based causality frameworks (SADA (Cai et al., 2013), MLC-LiNGAM
(W. Chen et al., 2021a), FRITL (W. Chen et al., 2021b)) are then introduced respectively. Not matter
which type I showcase in the following, the cruxes in such methodologies consist in figuring out
or utilizing unique characteristics of when a subgraph forms. Keeping this in mind helps readers
better grasp the functional concept thereof, such as ”causal cuts (Cai et al., 2013)”, ”maximal cliques
(W. Chen et al., 2021a)”, and ”Triad conditions (W. Chen et al., 2021b)” in terminology, that smoothly
glues different assumption-based algorithms into a final holistic framework.

4.2.2 The SADA Algorithm

The hybrid-based causal discovery framework referred as to SADA (Scalable cAusation Discovery
Algorithm) (Cai et al., 2013) features a strategic search on the ”causal cuts” capable of partitioning
global variables into the different subgraphs that are maximally independent of each other. Such
available independency at local subsets is guaranteed by the (common) sparsity of a causal graph.
Hence, effectiveness of small-scale causality algorithms is sufficiently harnessed over the subgraphs.

Algorithm 1 Hybrid-based Framework of the SADA Algorithm (Simplified Version)
Input: Data 𝑿 = {𝑥1 , ..., 𝑥𝑑}, variable set 𝑉𝑿 (|𝑉𝑿 | = 𝑑), variable threshold 𝜃 (𝜃 < 𝑑)
Output: causal graph 𝒢𝑿

1: if |𝑉𝑿 | ≤ 𝜃 then
2: Return 𝒢𝑿 ← CausalDiscovery(𝑿) ⊲ Apply causality algorithms mentioned in Section 4.1.2.
3: end if
4: {C, 𝑉1

𝑿 }, {𝐶,𝑉2
𝑿 } ← GetCausalCut(𝑉𝑿)

5: 𝒢1
𝑿 ← SADA(𝑿 , {𝐶,𝑉2

𝑿 }, 𝜃)
6: 𝒢2

𝑿 ← SADA(𝑿 , {𝐶,𝑉2
𝑿 }, 𝜃)

7: Return 𝒢𝑿 ←Merge(𝒢1
𝑿 , 𝒢2

𝑿)
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4.2.3 The MLC-LiNGAM Algorithm

The hybrid-based causal discovery framework referred as to MLC-LiNGAM (Linear non-Gaussian
Acyclic Model withMultiple Latent Confounders) (W. Chen et al., 2021a) composes three sequential
stages that are ”hindsightly” organized through several ”specific graphical patterns” at which mul-
tiple latent confounders may hint initially. By graphical patterns I mean the subgraphs (referred to
as maximal cliques) over which none of the pairwise variable within satisfies conditional indepen-
dency or the independence noise assumption, which thus suggests a kind of externally confounding
dependency that the MLC-LiNGAM is anticipated to detect at the end.

Algorithm 2 Hybrid-based Framework of the MLC-LiNGAM Algorithm (Simplified Version)
Input: Data 𝑿 = {𝑥1 , ..., 𝑥𝑑}, independence test threshold 𝛼 (𝛼 < 0.05)
Output: causal graph 𝒢𝑿

1: Stage-1: 𝒢1
𝑿 ← CausalDiscovery(𝑿 , 𝛼) ⊲ Apply the PC algorithm (Section 4.1.1).

2: Stage-2: 𝒢2
𝑿 ← CausalDiscovery(𝑿 , 𝒢1

𝑿) ⊲ Based on the LiNGAM rationale (Section 4.1.2).
3: Stage-3: 𝒢𝑿 ← CausalDiscovery(𝑿 , 𝒢2

𝑿) ⊲ Apply algorithms iteratively over maximal cliques.

Note: Complete and formal algorithmic implementation is available in Appendix B.

4.2.4 The FRITL Algorithm

Akin to the above MLC-LiNGAM algorithm, another hybrid-based framework referred as to FRITL
(W. Chen et al., 2021b) composes four causal discovery stages — in particular highlighted with an
additional technique that is able to detect latent confounders given the ”Triad constraints” (Cai et
al., 2019). It’s worth noticing that the ”Triad condition” is exactly well-fitted to presumably tree-
like structures that only consist of a small group of variables, resulting in additional causal iden-
tification over subgraphs (as compared to the aforementioned MLC-LiNGAM algorithm). Finally,
with the FRITL algorithm asymptotically transforming a Partially Directed Acyclic Graphs (PDAGs)
(mentioned in Section 4.1.1) obtained by Stage-1 into a DAG, causality algorithms in favor of low-
dimensional circumstances can then be suitably applied to the remaining undetermined relationship
(e.g. merely pairwise relationships) among variables in the graph.

Algorithm 3 Hybrid-based Framework of the FRITL Algorithm (Simplified Version)
Input: Data 𝑿 = {𝑥1 , ..., 𝑥𝑑}, independence test threshold 𝛼 (𝛼 < 0.05)
Output: causal graph 𝒢𝑿

1: Stage-1: 𝒢1
𝑿 ← CausalDiscovery(𝑿 , 𝛼) ⊲ Apply the FCI algorithm (Section 4.1.1).

2: Stage-2: 𝒢2
𝑿 ← CausalDiscovery(𝑿 , 𝒢1

𝑿) ⊲ Based on the LiNGAM rationale (Section 4.1.2).
3: Stage-3: 𝒢3

𝑿 ← CausalDiscovery(𝑿 , 𝒢2
𝑿) ⊲ Apply the Triad condition.

4: Stage-4: 𝒢𝑿 ← CausalDiscovery(𝑿 , 𝒢3
𝑿) ⊲ Apply algorithms iteratively over maximal cliques.
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METHODOLOGY

With supplemental field knowledge, I herein as the first-author reiterate and rephrase my primary
undergraduate research work “Non-linear Causal Discovery for Additive Noise Model with Multi-
ple Latent Confounders” (X. Chen et al., 2023b), which serves as an effort to make the content of the
research paper more accessible for technical or interested readers.

While the Chapter in this report adopted relatively informal language and flexible structure, it’s still
written for technical readers — including experts, faculty, and/or employers — who wish to make
assessment (regarding research experiences) on my undergraduate research work.

Reminder: Several friendly hooks here helping direct you back to the previous Chapter 4, the next Chapter 6,
the table of Contents, or the Reading Guidance of This Report for Different Audiences.

5.1 Overview: AHybrid-based Framework forGenericCausalDiscovery

It is worth pointing out at the beginning that, our work, the NonlinearMLC (Non-linear functions
with Multiple Latent Confounders) theory and algorithm in causality, relies heavily on the theoret-
ical Causal Assumption imposed upon machine learning, as well as the algorithmic basis provided
by both the state-of-the-art approaches and hybrid-based framework in Causal Discovery, which I
have introduced in Section 3.3, Section 3.4, Section 4.1, and Section 4.2 in this report, respectively.

This Chapter is organized via commencing with an example that showcases the intuition related
to our primary finding in Causal Discovery, then formalizing both the model and theory capable of
discovering causation in nonlinear systems with unknown factors (aka. the generic circumstance),
and finally offering a solution in form of an out-of-box Causal Discovery algorithm.

An Example: Nonlinear causation identification under the presence of indirected latent confound-
ing, which is illustrated through statistical asymmetry reflective of two hypothetical causal direction.

Model and Theory: The NonlinearMLC model with its identification theory, which can be viewed
as the generalization of the well-know causal ANMs (Hoyer et al., 2008) with the latent confounders.

Solution: An algorithmwith its Python implementation (will also be introduced in Section 6.1) inte-
grated byCADIMULC (will also be introduced in Section 7.1), our associated open source repository,
in Github: https://github.com/xuanzhichen/cadimulc/tree/master.

24
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5.2 An Example: Indirected Nonlinear Confounding

Metaphor in Figure 5.1 by itself characterizes the heart of our idea in this work in terms of intuitive
causal insights. The rest of the paper or the rest of this Chapter serves as the formalization for the
causal identification condition, with which a novel hybrid-based Causal Discovery algorithm can
equip to handle generic causation with nonlinearity and multiple latent confounders.

Reminder: Several friendly hooks here helping direct you back to the previous Section 5.1, the next Section 5.3,
the current Chapter 5, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

5.2.1 A Standard Deconfounding Process in Inferred Causation

Deconfounding Under Observed (Directed or Indirected) Confounders

By deconfounding I mean the mainstream machine learning strategy by which modern Causal Dis-
covery approaches discover a causal order (relative to the Directed Acyclic Graphs (DAGs)) in an
iterative way. For instance, if a set of sharing parents (aka.”observed confounders”) relative to two
variables are observed, the causal relationship between these two variables cannot be inferred— un-
less the influence of the sharing parents has been removed; such strategy (of removing confounding)
can then be iteratively implemented top-down through theDAGs (e.g. searching from the exogenous
node at the beginning, and all the way to the leaf node).

Notice that the action of ”deconfounding” in part resembles the action of ”Conditional Indepen-
dence Test (CIT)”, except that the former realizes its purpose through the regression technique.

Deconfounding Under the Presence of (Indirected) Latent Confounders

Given a hypothetical causal-and-effect relationship (e.g. 𝐶 → 𝐸) between two variables (𝐶 and 𝐸),
and discussing the unobserved causal influence (e.g. can be indirected) from one of their parents
(denoted either as 𝑝𝑎𝐶 or 𝑝𝑎𝐸, as opposed to the observed one 𝑝𝑎𝐶 or 𝑝𝑎𝐸) by dividing the circum-
stances into two diagrams (shown in Fig 5.1, the left panel and the right panel, respectively), let me
”hindsightedly” introduce the process through which the Causal Asymmetry is identified.

Figure 5.1: Intuitions of non-linear causal identification under indirected latent confounding. Take the identification
over a non-linear additive-noise-model denoted as ”cause-and-effect” 𝐶 → 𝐸. Obviously, 𝐶 → 𝐸 cannot be methodolog-
ically identified, if both of their parent are unobserved (e.g. 𝑝𝑎𝐶 and 𝑝𝑎𝐸), amounting to an unobserved common cause.
The question is, whether 𝐶 → 𝐸 keeps identifiable if only one side of the parent is unobserved and even triggers the
indirected confounding (e.g. 𝐶 ← 𝑝𝑎𝐶 ← 𝑝𝑎𝐸 → 𝐸)? (Image reprinted from X. Chen et al., 2023b).
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As illustrated by the instance shown above, the ”deconfounding” procedure results in the residu-
als of 𝐶 and 𝐸 (denoted as 𝑅𝐶 and 𝑅𝐸 in Equation 5.1) by regressing on all the hypothetical observed
parents respectively (including 𝐶 and 𝐸).

< 𝑅𝐶 , 𝑅𝐸 > =


𝑅𝐶 := 𝐶 − 𝑓𝐶(𝐸, 𝑝𝑎𝐸); 𝑅𝐸 := 𝐸 − 𝑓𝐸(𝐶, 𝑝𝑎𝐸), Left Panel,
𝑅𝐶 := 𝐶 − �̂�𝐶(𝐸, 𝑝𝑎𝐶); 𝑅𝐸 := 𝐸 − �̂�𝐸(𝐶, 𝑝𝑎𝐶), Right Panel.

(5.1)

Combining the Independence Test, as shown in previous literature (Hoyer et al., 2008; Peters et al.,
2017), leads to the statistical asymmetry, indicating that only if (after ”deconfounding”) the statisti-
cal patterns (shown in Equation 5.2) occur simultaneously — independence showcased between 𝑅𝐸

and 𝐶, whereas the dependence showcased between 𝑅𝐶 and 𝐸 — could we say the (hypothetical)
direction of the ”cause-and-effect” relationship 𝐶 → 𝐸 is identifiable from data.

(𝑅𝐸 ⊥⊥ 𝐶) ∧ (𝑅𝐶 ⊥̸⊥ 𝐸). (5.2)

In light of this basis, and given two different conditions in relation to the absence of parents (𝑝𝑎𝐶 or
𝑝𝑎𝐸) that raise latent confounding (e.g. light-orange colored arrows that 𝐶 ← 𝑝𝑎𝐶 → 𝑝𝑎𝐸 → 𝐸 on
the left panel, or light-green colored arrows 𝐶 ← 𝑝𝑎𝐶 ← 𝑝𝑎𝐸 → 𝐸 on the right panel), Fig 5.1 ar-
gues that only the circumstance shown in the left panel illustrates an identifiable causal relationship
(even with latent confounding). In other words, one cannot statistically infer the cause-and-effect
relationship (without physical experiments) given the circumstance shown in the right panel.

5.2.2 (Indirected) Latent Confounding, Linearity, and Nonlinearity

”Deconfounding” deserves further discussion since existing work (Maeda et al., 2021; Maeda et al.,
2024) on the similar topic — nonlinear Causal Discovery with latent confounders — haven’t had
an identification condition (in terms of the Causal Graph) akin to the illustration shown in Fig 5.1.
Notice that the difference regarding the unobserved patent of which side is trivial in the context of
linearity, since linear causal models wouldn’t be distorted by indirected confounding.

Specifically, if considering the latent confounding triggered by unobserved parents 𝑝𝑎, the expla-
nation exhibits an intuitive side when we draw comparison with the methodology in linear cir-
cumstances: No matter which latent confounder raised by the unobserved parents 𝑝𝑎𝐶 or 𝑝𝑎𝐸, the
causal information ”flow” alongside the indirected confounding path ending up between 𝐶 and 𝐸

will be ”blocked” by one of their observed parents (e.g. 𝐶 ← 𝑝𝑎𝐶 ← 𝑝𝑎𝐸 → 𝐸 is blocked by 𝑝𝑎𝐶 ;
𝐶 ← 𝑝𝑎𝐶 → 𝑝𝑎𝐸 → 𝐸 is blocked by 𝑝𝑎𝐸).

Such blocking behaviors entirely ”blocks” the information flowwith respect to the confounding path,
which means being capable of deconfounding by linear regression methodologically. This strategy,
unfortunately, could not pay off in terms of non-linear functions, due to the variables’ non-linear in-
teraction compromising the effect of regression. I will continue to explain for this point in Section 5.3.
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5.3 Model: Research Motivation & Problem Statement

I herein formalize the issues of nonlinearity through first restricting the Causal Model (I’ve intro-
duced in Section 3.2 in this report) upon awell-known subclass—CausalAdditiveModels (CAMs)—
capable of implying the Structural Identifiability (I’ve introduced in Section 4.1.2 in this report), and
then modifying the function composition to characterize the effects of multiple latent confounding.
Additionally, this section provides the rephrased and supplemental content for my undergraduate
researchwork (X. Chen et al., 2023b) (in Section 3: Model, Assumption, and Causal Identification Theory).

Reminder: Several friendly hooks here helping direct you back to the previous Section 5.2, the next Section 5.4,
the current Chapter 5, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

5.3.1 Motivation: Indeterministic Parents-Child Causal Relationships

While a deterministic or pseudo-indeterministic system (Spirtes et al., 2000), a model regularly used
to represent the causal relationship, cannot satisfy our cases concerning the presence of latent con-
founders, we found that an indeterministic (as its opposite) does not necessarily become trivial if
one could view the role of some latent confounders as same as the unobserved parents.

In a narrow sense — dividing a node’s parents (according to Directed Acyclic Graphs (DAGs)) into
the observed and the unobserved ones — we are motivated to reconsider another structural model
(Equation 5.3) capable of unifying causal properties in both nonlinearity and latent confounding.

Let 𝒢𝑿 the DAGs of variables 𝑿 = {𝑥1 , 𝑥2 , . . . , 𝑥𝑑}, with i.i.d. noises 𝜺 = {𝜀1 , 𝜀2 , . . . , 𝜀𝑑}. Pre-
suming the additive-noise-models (ANMs) (Hoyer et al., 2008) — a type of CAMs (I’ve introduced
in Section 4.1.2 in this report) specified in three-differentiable nonlinearity — the Causal Model
< 𝒢𝑿 ,Θ𝒢𝑿 > = < 𝒢𝑿 , 𝜺, 𝒇 𝑿 > (I’ve introduced in Section 3.2 in this report) can be formalized in
form of the parents-child generation procedure, with the pairwise relationshiop 𝑥 𝑗 → 𝑥𝑖 that

𝑥𝑖 := Θ𝒢𝑿 (𝒑𝒂(𝑥𝑖) + 𝒑𝒂(𝑥𝑖)) :=
∑

𝑥 𝑗∈𝒑𝒂 𝑖

𝑓𝑖 𝑗(𝑥 𝑗) + 𝜉𝑖 . (5.3)

We highlight that in Equation 5.3 the ” (multiple) latent confounding” from ”unobserved parents”
𝒑𝒂 (observed parents 𝒑𝒂 analogically) is incorporated to the extensive noises that 𝜉𝑖 := 𝜀𝑖 ∪ 𝒇 (𝒑𝒂 𝑖).
For the sake of simplicity, we specify the model generated byNon-linear functions 𝒇 𝑿 withMultiple
Latent Confounders (in 𝜉𝑿) as the Nonlinear-MLC model.

Additionally mild assumptions required in the Causal Discovery task are listed as follows (I’ve also
introduced in Section 3.3.5 in this report): A-1 Markov Assumption: Independence yielded by 𝒢𝑿 is
consistent with ones over distributions 𝑃𝑿 . A-2 Faithfulness Assumption: Distributions 𝑃𝑿 faithfully
encode independence entailed only by 𝒢𝑿 .

5.3.2 Problem: Latent (Causal) Structure and Composite CAMs

In light of the structural formalism of the Nonlinear-MLC model, we then rephrase our interested
problem under the fundamental Causal Discovery framework, namely to discover a latent structure
(Pearl, 2009) relative to the Causal Model. By latent (causal) structure we mean a double tuple
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< 𝒢𝑿 ′ ,𝑿 ′ > where 𝒢𝑿 ′ ⊂ 𝒢𝑿 and 𝑋′ ⊂ 𝑋. In other words, the Nonlinear-MLC model establish an
omniscient perspective regarding the observationality of child-parent relationships, whereas in prac-
tice the task is to discover 𝒢𝑿 ′ over 𝑿 ′ with the presence of unobserved parents (latent confounders).

Traditionally, the aforementioned task (Causal Discovery with latent confounding) could be done
by expunging causal functions’ effects with linear regression, and thus revealing the testable inde-
pendence noise (aka. the residuals, as Equations 5.1 and 5.2 that I mentioned in Section 5.2.1 in this
report). Contrasting with linear combinations (e.g. 𝜙( 𝛼 (𝛽𝜀𝑖) ) = (𝛼 · 𝛽) · 𝜀𝑖), the Nonlinear-MLC
model by Equation(5.3) (in terms of the testable independence noise) CANNOT be expanded as:

𝑥𝑖 :=
∑

𝜀𝑘∈𝜺\{𝜀𝑖}
𝜙(𝜀𝑘) + 𝜀𝑖 . (5.4)

Composite non-linear functions 𝜙 := 𝑓 ( 𝑓 (...)) relative to independent noises cannot be accessible,
in the sense that ”composite CAMs” (or equally referred to as the cascading ANMs (Qiao et al.,
2021)) do not hold with embedded latent noises 𝜺𝒑𝒂 , leading to the infeasibility to expunge non-
linear effects from within. Once again, contrasting with linear regressor (denoted as ℛ(𝒑𝒂 𝑖)), the
presence of ”endogenous (unobserved) dependence 𝜺𝒑𝒂”will compromise (nonlinear) regression,
FAILING to satisfy the following deconfounding procedure (I mentioned in Section 5.2.1):

©«𝑥𝑖 −
∑

𝜀𝑘∈𝜺\{𝜀𝑖}
𝜙(𝜀𝑘) = 𝜀𝑖

ª®¬ ⇒
(
𝑥𝑖 − ℛ(𝒑𝒂 𝑖) = 𝜀𝑖

)
. (5.5)

Hence, the testable independence noise cannot be yielded due to the embedded latent noises (in
terms of unobserved parents) when it comes to nonlinearity, and herein lies the problem.

5.4 Theory: The L-ANMs Identifiable Condition

Aiming at mitigating the above issue, I will commence this section with our proposed Lemma 1, ar-
guing as the (theory for) latent additive noise models ( L-ANMs ), to stipulate a novel identifiable
condition for the Nonlinear-MLC models (I mentioned in Section 5.3.1). Combining with the pre-
vious section, this section provides the rephrased and supplemental content for my undergraduate
researchwork (X. Chen et al., 2023b) (in Section 3: Model, Assumption, and Causal Identification Theory).

Reminder: Several friendly hooks here that direct you back to the previous Section 5.3, the next Section 5.5, the
current Chapter 5, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

5.4.1 Contribution as a Causal Identifiable Condition

One may view Lemma 1 as an expedient that aims to make the most of the extant Causal Discovery
methodologies under the condition of nonlinearity and multiple latent confounding. It’s important
to notice that Lemma 1 by itselfDOESNOT imply a kind of new identifiability for extant Causal Dis-
covery approaches. Nevertheless, Lemma 1 severs as a well-defined guidance that can be straight-
forwardly applied to the deconfounding procedure (I mentioned in Section 5.2.1) in nonlinear cases,
which reduces the influence from the embedded latent noises (in terms of unobserved parents) (I
mentioned in Section 5.3.2).
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Theory in Relation to my Work

Lemma 1 Assuming data generation procedures are consistent with Equation (5.3), the
pair 𝐶 → 𝐸 among other unobserved pairs 𝑪∗ → 𝐸 is identifiable if and only if

(𝜉𝐸 ⊥⊥ 𝐶) ∧ (𝜉𝐸 := 𝜀𝐸 ∪ 𝒇 (𝑪∗)) (5.6)

is satisfied, where other multiple unobserved causes 𝑪∗ are denoted as 𝑪∗ := 𝑪\𝐶 = 𝒑𝒂𝐸.

Contributions of the L-ANMs Lemma are three-fold:

• It is targeted for non-linearity, not necessarily a compulsion for linear cases.
• A succintly deterministic (well-defined) identification condition, compared to notions in pre-

vious work (e.g. ”C-ANMs” [Qiao et al., 2021] or ”CAM-UV” [Maeda et al., 2021]).
• Akin to the well-known identification condition ((𝜀𝐸 ⊥⊥ 𝐶) ∧ (𝜀𝐶 ⊥⊥ 𝐸 | 𝐶)) by Independence

Causal Mechanism(ICM) [Peters et al., 2017] (I’ve mentioned in ?? in this report):

1. Lemma L-ANMs explicitly states a version concerning the identifiable condition in multi-
variate cases (e.g. ((𝜀𝐸 ⊥⊥ 𝐶) in bi-variable cases VS. ((𝜉𝐸 ⊥⊥ 𝐶) in multivariate cases);

2. Lemma L-ANMs permits (𝜉𝐶 ⊥̸⊥ 𝐸 | 𝐶), as different to (𝜀𝐶 ⊥⊥ 𝐸 | 𝐶)), which is essentially
how we characterize the latent confounding by unobserved parents in this work.

5.4.2 Graphical Intuition

For illustration, Figure 5.4 (a) pictures our interested ”cause-and-effect” circumstance in Causal
Graph, where a number of other causes (denoted as 𝒞∗) are unobserved (namely the unobserved
parents of the effect variable). In light of this, Figure 5.4 (b) is essentially a systematic characteriza-
tion of the relationships among variables (e.g. the cause, the effect, their parents, and many other
variables in the system). Lemma 1 is then figuratively shown in Figure 5.4 (b) (marked as red).

Figure 5.2: Graphical intuitions of Lemma 1 (Latent-ANMs) with the symbol ”o-o” characterizing the uncertain causal
directions ”->” or ”<-”. (a) The structure involving relations between interested cause 𝐶 and multiple unobserved
causes 𝑪∗ given the effect 𝐸. (b) The general Nonlinear-MLC model with respect to the structure in (a), where 𝑈
summarizes the rest of observed variables (Image reprinted from X. Chen et al., 2023b).

5.4.3 Mathematical Backup

As compared with Equation 5.5, the result of L-ANMs is to inspire a seeking for empirical regressor
ℛ𝑖 to discover independence between 𝜉𝑖 and 𝑥 𝑗 (similar to the binary case 𝜉𝐸 and 𝐶 shown in Lemma
1). In other words, Equation 5.3 indicates that, if the search space of machine learning algorithms
involves a case in which the residual 𝜉𝑖 is independent of the variable 𝑥 𝑗 — after iteratively updating
the regressor ℛ𝑖 (by updating the set of regressing variables 𝑥ℎ), then the pairwise causal relation-
ship 𝑥 𝑗 → 𝑥𝑖 can be discovered from data (similar to the binary case 𝐶 → 𝐸 shown in Lemma 1).
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A scratch of proof (about the aforementioned content) with slight algebra in Equation 5.3 shows:

𝑥𝑖 −
∑

𝑥ℎ∈𝒑𝒂 𝑖\{𝑥 𝑗}
𝑓𝑖ℎ(𝑥ℎ)︸               ︷︷               ︸

ℛ𝑖

= 𝑓 (𝑥 𝑗) + ©«
∑

𝑥𝑘∈𝒑𝒂 𝑖

𝑓𝑖𝑘(𝑥𝑘) + 𝜀𝑖
ª®¬︸                  ︷︷                  ︸

𝜉𝑖

. (5.7)

In depth, hypothesizing the causal generative mechanism (Equation 5.3) for 𝐶 → 𝐸 as modelℳ1

and the reverse one 𝐸 → 𝐶 as modelℳ2, along with the likelihood functions ℒ = log 𝑃(·), the rest
of the proof can be reduced as the following algebraic asymmetry (Hoyer et al., 2008):

𝜕

𝜕𝑥 𝑗

(
𝜕2ℒ(ℳ)/𝜕𝑥2

𝑗

𝜕2ℒ(ℳ)/𝜕𝑥𝑖𝜕𝑥 𝑗

) 
≠ 0, ℳ =ℳ1 (causal direction 𝐶 → 𝐸),
= 0, ℳ =ℳ2 (anti-causal direction 𝐸→ 𝐶).

(5.8)

That is, the condition in Lemma 1 ensures a compatible proof framework, even we presume the
influence of latent variables, leading to the fact that theNonlinear-MLCmodel only holds in the causal
direction and can not be inverted. Technical readers may refer to Appendix A in this report for the
complete proof with more mathematical details (if necessary).

5.5 Solution: The Nonlinear-MLC Algorithm

When I was writing the paper (X. Chen et al., 2023b), I was meant to organize the structure in a way
commonly adopted by causal discovery related articles to introduce my work. That is, a newly pro-
posed causal discovery algorithm is expected to equip with a causality identifiable theory within.
Given our case, the identifiability condition exactly refers to Lemma 1 I just mentioned in the previ-
ous section. However, equipping our practical algorithm with associated theorem leads to another
question: the Nonlinear-MLC models to which Lemma 1 is tied are established in an omniscient per-
spective regarding the ”observationality of child-parent relationships”, whereas the algorithm in
practice is coping with circumstances with existing ”unobserved parents” (latent confounders).

I wish my aforementioned statement hereby fully implies the purpose with which I am writing this
section (or Section 4, ”A Theory-based Novel Algorithm for Causal Discovery” in my related research
paper (X. Chen et al., 2023b)): to contribute a Corollary derived from Lemma 1, which enables prac-
tical algorithms to asymptotically reach the theoretical causal identification (guaranteed by Lemma
1) amidst the learning environment with nonlinearity and latent confounding.

Reminder: Several friendly hooks here that direct you back to the previous Section 5.4, the next Section 5.6, the
current Chapter 5, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

5.5.1 Connecting the Theory with a Practical Graphical Pattern

First, due to the presence of unobserved parents in applications, existing algorithms [Maeda et al.,
2021][Tashiro et al., 2014] may end up being stuck in undetermined dependence of variable subsets.
The ”undetermined dependence” within variable subsets, from the graphical perspective, might in-
dicate the ”undirected connection” within maximal cliques 𝓜. (Notice that the maximal clique
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refers to a special pattern of Undirected Graphs, where every variable consisting of the graph is
connected with each other without directionality.) Second, one might notice that, in the view of
algorithms amidst their computing memory, the undetermined child-parent relationship amounts
to the results caused by the existence of either the truly multiple unobserved parents, or the ob-
servational variables whose “parental roles” just have not been determined, and thus have not
yet been stored into the algorithms’ memory. While the former issue (real unobserved parents) is
something we can not currently solve in this work, the later issue (temporarily undermined parents,
or personally I would like to refer to it as the ”pseudo-unobserved parents”) is what we aim to fix
through strategically adjusting the algorithmic behaviors (e.g. regression) during causal discovery.

For illustration, let’s recall the left panel in Figure 5.4. Notice that if there exists local structures
or subgraphs 𝓜 including 𝐶 , 𝐸, and 𝑪∗ during a certain stage of causal discovery algorithms, such
structures would limit the anticipant independence required by Lemma 1 between 𝑪∗ and 𝐶. (That’s
because every variable in 𝓜 has showcased dependence with each other!) Thus, we propose the
following corollary drawing on empirical regressor ℛ to counteract that dependence.

Corollary 1 Assuming data generation procedures are consistent with Equation (5.3), the pairwise cause-
and-effect 𝐶 → 𝐸 over a maximal cliqueℳ is identifiable if and only if

(𝐸 − ℛ𝐸(ℳ∗) ⊥⊥ 𝐶) ∧ (ℳ∗ :=ℳ𝐶,𝐸\ {𝐸}) (5.9)

is satisfied, whereℳ𝐶,𝐸 represents all observed variables including 𝐶 and 𝐸 within a maximal clique.

Were I to make Equation 5.9 in Corollary 1 more clear, one can view the term 𝐸 − ℛ𝐸(ℳ∗) simply as
the asymptotic approximation to the term 𝜉𝐸 in Equation 5.6, Lemma 1.

{𝐸 − ℛ𝐸(ℳ∗)} ↦→ 𝜉𝐸 . (5.10)

Formal proof related to Corollary 1 can be found in Appendix A in this report. For readers who
want to straightforwardly apply the Corollarywithout diving into technical details in Equation 5.9,
Figure 5.3 respectively illustrates three of the circumstances over which the maximal-clique-based
causal discovery is applied, in the view of algorithms amidst their computing memory. Notice that
𝑝𝑎𝐶 or 𝑝𝑎𝐸 denotes the (aforementioned) truly multiple unobserved parents, while the variables 𝑈
represent the (aforementioned) observational variables whose “parental roles” just have not been
determined. Thus, external causal influence from the former is marked as dotted yellow lines; con-
trollable causal influence from the later is on blue with its directionality hypothesized.

Figure 5.3: A toy graphical structure, namelyℳ𝐶,𝐸 = {𝐶, 𝐸,𝑈}, illustrates how to determine non-linear identifiability
under latent confounding (𝑝𝑎𝐶 or 𝑝𝑎𝐸) by applying Corollary 1. (Image reprinted from X. Chen et al., 2023b).
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For instance, let’s take case (c) in Figure 5.3. According to Equation 5.9 in Corollary 1, the term:

𝐸 − ℛ𝐸(ℳ∗) = 𝐸 − ℛ𝐸(ℳ𝐶,𝐸\{𝐸}) = 𝐸 − ℛ𝐸(𝐶,𝑈) (5.11)

informs our algorithm to perform nonlinear regression on variable 𝐸 through expunging the nonlin-
ear effects from variables 𝐶 and 𝑈 . If the regression is successfully done, it will graphically amount
to cutting off the dependence ”𝐶 o-o 𝐸” and ”𝑈 o-o 𝐸” from the graph shown in case (c).

Then, the next step is check whether such residuals 𝑅𝐸 = 𝐸 − ℛ𝐸(ℳ∗) are independent of the hy-
pothetical cause 𝐶. Looking closely into case (c), notice that even if the dependence ”𝐶 o-o 𝐸” and
”𝑈 o-o 𝐸” are removed, 𝐸 and 𝐶 are still correlated due to the unobserved parents 𝑝𝑎𝐸 that yields
latent confounding propagating through the path 𝐶 ← 𝑈 ← 𝑝𝑎𝐸 → 𝐸. Hence, our algorithm esti-
mates that, under circumstance (c), nonlinear causal relationship 𝐶 → 𝐸 cannot be identified (e.g.
denoted as ”↔”) from observational raw data, implying that there exists a kind of latent confound-
ing that precludes Corollary 1 from satisfaction.

Repeat my operation above but conduct it in case (a), this time reader will find that the indepen-
dency required by Corollary 1 is satisfied. The only thing I may need to remind is that, in case (b),
related independency will be derived from a ”V structure” forming in the graph. This involves the
notions of D-Separation that I’ve mentioned in Section 3.3.4 ”Structural Insights with D-Separation”.

5.5.2 A Two-stage Algorithmic Framework

The hybrid-based framework featured by the NonlinearMLC algorithm in our work (X. Chen et al.,
2023b) can be easy to understand if one grasps the basic idea entailed by the Corollary mentioned
above. Concretely, we apply the novel identification (implied by Corollary 1) on themaximal cliques
𝓜 partitioned over causal skeleton 𝒮𝑿 ′, which stands on the basic ground provided by the PC algo-
rithm [Spirtes et al., 2000], along with the algorithm’s identification guaranteed by Lemma 2.

Lemma 2 Suppose that assumptions A1 and A2 hold, every true adjacency pair of variables 𝑥𝑖 and 𝑥 𝑗 in 𝒢𝑿
is in accord with the estimated adjacency pair in causal skeleton 𝒮𝑿 ′ of 𝒢𝑿 ′ using PC algorithm.

The two-stage hybrid-based framework of theNonlinearMLC algorithm (simplified version) is listed:

Algorithm 4 Nonlinear-MLC Algorithm
Input: Data 𝑿 ′ = {𝑥1 , ..., 𝑥𝑚}(𝑚 < 𝑑), significant level 𝛼
Output: Estimated causal graph 𝒢𝑿 ′
1: ˆ𝒮𝑿 ′ ,𝒢𝑿 ′ ← 𝑠𝑡𝑎𝑔𝑒1𝐶𝑎𝑢𝑠𝑎𝑙𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦(𝑿 ′, 𝛼),
2: search← True;
3: while search do
4: 𝒢𝑿 ′ ← 𝑠𝑡𝑎𝑔𝑒2𝐶𝑎𝑢𝑠𝑎𝑙𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦(𝑿 ′, 𝛼, 𝓜( ˆ𝒮𝑿 ′), 𝒢𝑿 ′), ⊲ Causal inference based on Corollary 1.
5: search← False;
6: if 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑𝑁𝑒𝑤𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝒢𝑿 ′) then
7: search← True;
8: end if
9: end while

10: return(𝒢𝑿 ′)
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For Python implementation of the algorithm mentioned above, readers may also move to my
related code snippet Listing 6.3 displayed in the next Chapter 6 ”Programming (Code Samples)”.

Figure 5.4: A two-steps method with the spurious edges detecting latent confounders (Image reprinted from X. Chen
et al., 2023b).

According to causality insights borrowed fromW. Chen et al., 2021a, another finding in Figure 5.4
lies in the spurious edges (marked in yellow)raised by latent confounders are accompanying with
the stage-1 causal skeleton discovery (by the PC algorithm), which will be consistent to the (partial
determined)maximal cliques that are comprised of a least one undetermined edge (e.g.↔marked in
green) after applying Corollary 1mentioned in the previous section. Therefore, this is the procedure
inwhich theNonlinearMLC algorithm conducts nonlinear causal discovery and ultimately detects the
presence of latent confounders.

5.6 Summary

Reminder: Several friendly hooks here that direct you back to the previous Section 5.5, the next Chapter 6, the
current Chapter 5, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

Leveraging the popular methodology, namely the regression and the independence test, procedure
of causal identification after the standard ”deconfounding” process (e.g. deconfounding the influ-
ence from observed confounders) has been successfully applied in multivariate causal discovery.
In practice, nevertheless, only a subset of variables relative to a reasonable system could be mea-
sured, leading to the presence of (multiple) unobserved confounders. Additionally, linear causal
discovery methodologies capable of expunging the effects of latent confounding through multivari-
ate regression, unfortunately, could not pay off in terms of (regressing) non-linear functions. Both
nonlinearity and the existence of latent confounders pose significant challenges on distinguishing
causal directions in such generic circumstances.

Our work shown in this report, however, still endeavour to contribute a leeway for appropriately
identify causal direction from the data that involves non-linearity and latent confounding. Briefly,
our finding (as illustrated in Fig 5.2) consists in that the direction of ”cause-and-effect” 𝐶 → 𝐸 is
able to continuously keep identifiable, only if the confounding is triggered by the unobserved parent
𝑝𝑎𝐶 rather than 𝑝𝑎𝐸. Equipping with the theoretical conclusion (shown in Section 5.4) , we further
proposed a ”hybrid” causal discovery algorithm (shown in Section 5.5)that will wisely utilize the
regression-independence-test methodology to reach the practical efficiency.
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PROGRAMMING (CODE SAMPLES)

Through hiding some low-level implementation details for readers, I will introduce the most rele-
vant programming (in Python) of my undergraduate research work (X. Chen et al., 2023b) in this
Chapter — in form of attaching my annotations for several separated pieces of the ”quasi-source-
code”. The coding display herein covers a typical procedure of the task of causal discovery, such as
data generation, automation of causal inference, and graph visualization and evaluation. The source
code used for comment in this Chapter depends on the program’s initial version (May, 2024), with
its complete programming in Github: https://github.com/xuanzhichen/cadimulc/tree/master.

While the Chapter in this report adopted relatively informal language and flexible structure, it’s still
written for technical readers — including experts, faculty, and/or employers — who wish to make
assessment (regarding professional coding skills) on my undergraduate research work.

Reminder: Several friendly hooks here that direct you back to the previous Chapter 5, the next Chapter 7,
the table of Contents, or the Reading Guidance of This Report for Different Audiences.

6.1 Implementation for the Proposed Algorithm

Given our proposed NonlinearMLC algorithm (Section 5.5), this section is meant to showcase only a
”glimpse” of its composition and organization from the perspective of (the simplified) source code.

6.1.1 Module-1: Hybrid Framework Base

1 class HybridFrameworkBase(metaclass=ABCMeta):
2 def __init__(self, _skeleton: ndarray = None, _adjacency_matrix: ndarray = None):
3 # parameters setting
4
5 @abstractmethod
6 def fit(self, dataset: ndarray) -> ndarray:
7 # fitting data via hybrid-based causal discovery
8 return self.adjacency_matrix_
9

10 def _causal_skeleton_learning(self, dataset: ndarray) -> ndarray:
11 # learning an undirected graph through conditional independence tests
12 return self.skeleton_

Listing 6.1: Hybrid Framework Base in Python.

34
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My Annotation: A hybrid-based causal discovery framework (HybridFrameworkBase) refers to
the established first-stage of causal skeleton discovery (_causal_skeleton_learning) by the Peter-
Clark algorithm (Spirtes et al., 2000). fit is a requiredmethod fitting data via the algorithm, leading
to a causal graph in form of an adjacency (Boolean) matrix (adjacency_matrix_).

Additional Notes: The framework is also incorporated into the initial stage of the other popu-
lar hybrid-based approach (in IEEE-TNNLS, 2021), the MLC-LiNGAM algorithm (W. Chen et al.,
2021a), with its complete Python implementation available in Appendix B.

6.1.2 Module-2: Auxiliary Manager for Structure Learning

1 class GraphPatternManager(object):
2 def __init__(
3 self,
4 init_graph: ndarray,
5 managing_adjacency_matrix: ndarray | None = None,
6 ):
7 self._managing_skeleton = copy(init_graph)
8 # other parameters setting
9

10 def identify_directed_causal_pair(self, determined_pairs):
11 if len(determined_pairs) > 0:
12 # update self.managing_adjacency_matrix
13 return self
14
15 def get_undetermined_cliques(self, maximal_cliques: list[list]) -> list:
16 maximal_cliques_undetermined = contrasted_search(
17 self._managing_skeleton
18 self.managing_adjacency_matrix,
19 )
20 # Mark undetermined cliques (with respect to the original maximal cliques)
21 # if there is at least one edge (in a clique) remaining undetermined.
22 return maximal_cliques_undetermined
23
24 @staticmethod
25 def recognize_maximal_cliques_pattern(
26 causal_skeleton: ndarray,
27 ) -> list[list]:
28 maximal_cliques = []
29 # Search (original) maximal cliques over the causal skeleton
30 return maximal_cliques

Listing 6.2: Auxiliary Manager (Graphical Pattern Manager) in Python.

My Annotation: An auxiliary module (GraphPatternManager) embedded in algorithms assist
the algorithmic behavior in graphical pattern recognition (recognize_maximal_cliques_pattern)
(I’ve mentioned in Section 5.5.1 ”Connecting the Theory with a Practical Graphical Pattern” in this re-
port). With the help of get_undetermined_cliques and identify_directed_causal_pair, themod-
ule as well manages (transitional) adjacency matrices amidst the procedure between (initial) causal
skeleton learning and (final) causal direction orientation— namely an estimated graph is iteratively
transferred from the state of undetermined init_graph to the determined managing_adjacency_matrix.
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6.1.3 Module-3: Primary Programming of the Algorithm

It’s worth noticing that the following code sample in this section is echoing to the pseudo-algorithm
mentioned in Section 5.5.2 ”A Two-stage Algorithmic Framework”. Meanwhile, the code sample within
is simplified for the sake of readability. Complete Python source code is available at:

https://github.com/xuanzhichen/cadimulc/blob/master/cadimulc/hybrid_algorithms/

1 ### Input: Data (dataset), significant level (pc_alpha)
2 ### Output: Estimated causal graph (in form of adjacency matrix)
3
4 class NonlinearMLC(HybridFrameworkBase):
5 def __init__(
6 self,
7 ind_test: str = 'kernel_ci',
8 pc_alpha: float = 0.05,
9 _regressor: object = GAM() # (nonlinear) Generalized Additive Models

10 ):
11 HybridFrameworkBase.__init__(self, pc_alpha=pc_alpha)
12 # other parameters setting
13
14 def fit(self, dataset: ndarray) -> ndarray:
15 ### Stage-1 Causal Discovery
16 # Reconstruct a causal skeleton using the PC-stable algorithm.
17 causal skeleton = self._causal_skeleton_learning(dataset)
18
19 # Initialize a graph pattern manager for subsequent learning.
20 graph_pattern_manager = GraphPatternManager(
21 init_graph=causal skeleton
22 )
23
24 continue_search = True
25 while continue_search:
26
27 ### Stage-2 Causal Discovery
28 # Obtain the cliques that remain at least one edge undetermined.
29 undetermined_maximal_cliques = (
30 graph_pattern_manager.get_undetermined_cliques(maximal_cliques)
31 )
32
33 # End if all edges over the cliques have been determined.
34 if len(undetermined_maximal_cliques) == 0:
35 break
36
37 # Perform the (main part of) the NonlinearMLC causal discovery.
38
39 # !!! Noice !!!
40 # See the method "_clique_based_causal_inference" in the next page.
41 determined_pairs = self._clique_based_causal_inference(
42 undetermined_maximal_cliques=undetermined_maximal_cliques
43 )
44
45 # Orient determined causal directions after a search round over maximal cliques.
46 graph_pattern_manager.identify_directed_causal_pair(
47 determined_pairs=determined_pairs
48 )
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49
50 # Update the causal adjacency matrix after a search round over maximal cliques.
51 self._adjacency_matrix = (
52 graph_pattern_manager.managing_adjacency_matrix
53 )
54
55 # Check if new causal relations have been determined after the last round searching.
56
57 # !!! Noice !!!
58 # For simplicity, I didn't display this minor method in the previous section "Module-2".
59 newly_determined = (
60 graph_pattern_manager.check_newly_determined(
61 undetermined_maximal_cliques
62 )
63 )
64
65 # End if there is none of new causal relation advancing the further search.
66 if not newly_determined:
67 continue_search = False
68
69 return self.adjacency_matrix_
70
71 def _clique_based_causal_inference(self, maximal_cliques: list[list]) -> list:
72 """
73 Parameter Required: methods related to
74 (i) nonlinear regression
75 (ii) (conditional) independence tests
76
77 # !!! Notice !!!
78 # This method implements a strategic regression-independence methodology for causal inference,
79 # which may be too technical to be displayed in an introductory report.
80
81 # !!! Notice !!!
82 # Interested technical readers seeking thorough details related to this method
83 # may refer to my paer and github source code at
84 # (line 623, hybrid_algorithms.py, initial version 0.0.0).
85 """
86
87 ### Implementation Ideas:
88 # In light of the L-ANMs theory (proposed in Section 5.4 and 5.5 in this report),
89 # start the search round by conducting non-linear causal inference based on maximal cliques.
90
91 return maximal_cliques_undetermined
92

Listing 6.3: Primary Programming of the NonlinearMLC Algorithm in Python.

My Annotation: The primary programming of the NonlinearMLC algorithm (NonlinearMLC)
operates as an incorporation of the constraint-based (Section 4.1.1) and the functional-based (Sec-
tion 4.1.2) causal discovery methodology, aiming at approaching the generic causal inference over
nonlinear data with the presence of multiple unknown factors. Accordingly, NonlinearMLC thereby
features its algorithmic capability of exploiting the (asymptotic approximation of) nonlinear causal
identification with multiple latent confounders, which is also proposed as the Latent-ANMs causal
identification (I’ve highlighted in Section 5.4 and Section 5.5 in this report as the main contribution
of my undergraduate research work (X. Chen et al., 2023b)).
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Based on the code snippet Listing 6.3, several programming details are explained as followings:

• HybridFrameworkBase: The framework base (mentioned in Section 6.1.1) acts as Class inheri-
tance relative to theNonlinearMLC algorithm, in order to conduct first-stage skeleton discovery
by the PC algorithm (Spirtes et al., 2000) during the entire hybrid-based causal discovery.

• __init__:

* ind_test refers to the recommendedpopular non-linear independence-testsmethod: Kernel-
based Conditional Independence tests (KCI) (Zhang et al., 2012). Aside from kci, the
other parameter setting hsic, Hilbert-Schmidt Independence Criterion (for General Ad-
ditive Models (HSIC-GAMs)) (Gretton et al., 2005), is also available.

* pc_alpha refers to the significance level of independence tests (aka. P-value), which is re-
quired by the constraint-basedmethodology incorporated in the initial stage of the hybrid
causal discovery framework.

* _regressor=GAM() refers to the nonlinear regression method adopted by the algorithm
in subsequent stages, which is well-fitted to perform regression over (nonlinear) additive
models (Wood, 2004) — the identifiable functional class I mentioned in Section 4.1.2.

• fit: Fitting data via the Nonlinear-MLC causal discovery algorithm.

* The procedure comprises the causal skeleton learning in the initial stage, along with the
causal identification procedure involving non-linear regression and independence tests
for the subsequence.

* Following the well-known divide-and-conquer strategy, non-linear causal inference are
conducted over the maximal cliques recognized from the estimated causal skeleton.

• _clique_based_causal_inference:

* For each of the undetermined maximal cliques (e.g. at least one edge within a maximal
clique remains undirected) with respect to the whole maximal-clique patterns, the algo-
rithm conducts non-linear regression and independence testswith the additional explana-
tory variables selected from the undetermined maximal clique.

* This strategy is argued to enhance the efficiency and robustness as to the non-linear causal
discovery with multiple latent confounders, serving as the essence of the Nonlinear-MLC
algorithm (See ”Latent-ANMs Lemma” for relevant details my paper (X. Chen et al.,
2023b), Section 3; or Section 5.5 in this report).
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6.2 Module Tests

In light of the three modules (mentioned in the previous section) of our proposed algorithm, this
section further provides an overview of their feasibility test respectively.

I should remind herein that each module test may rely on several pre-declared functions with which
the module tests are assisted. I try to name these functions clearly so that readers may not need
to refer to their concrete definition while glancing over the code sample. By the same token, code
sample introduced in this section is processed with simplicity. Complete testing is available at:

https://github.com/xuanzhichen/cadimulc/blob/master/tests/test_hybrid_algorithms.py

Reminder: Several friendly hooks here helping direct you back to the previous Section 6.1, the next Section 6.3,
the current Chapter 6, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

6.2.1 Test for Module One

The following code snippet is testing for the correct initialization of HybridFrameworkBase, and the
foremost encapsulation of themethod get_skeleton_from_pc, meaning to discover a causal skeleton
via the PC algorithm (Spirtes et al., 2000) in the first stage during the entire hybrid-based causal
discovery framework.

1 def test_0x1_causal_skeleton_learning():
2 random_seed = 42
3
4 # Randomly generate simulated causal model in a general setting.
5 ground_truth, data = simulate_single_case_causal_model(
6 linear_setting=False,
7 random_seed=random_seed
8 )
9

10 display_test_section_symbols()
11
12 print("* Ground Truth Adjacency Matrix: \n", ground_truth)
13
14 # Test the correct initialization of HybridFrameworkBase.
15
16 nonlinear_mlc = NonlinearMLC()
17 nonlinear_mlc._dataset = data
18 model = nonlinear_mlc
19
20 # Test the foremost encapsulation of get_skeleton_from_pc.
21 model._causal_skeleton_learning(data)
22
23 draw_graph_from_ndarray(
24 array=ground_truth,
25 testing_text='ground_truth'
26 )
27 draw_graph_from_ndarray(
28 array=model.skeleton_,
29 testing_text='estimation_skeleton'
30 )
31
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32 draw_graph_from_ndarray(
33 array=model.skeleton_,
34 graph_type=True,
35 testing_text='estimation_adjacency_matrix'
36 )
37
38 plt.show()
39
40 print("* Stage-1 Running Time: ", model.stage1_time_)

6.2.2 Test for Module Two

The following code snippet is testing for the Class-methods as to the cliques pattern management
(GraphPatternManager). Specifically, the code tests (1) recognizing the maximal-cliques pattern
over a causal skeleton; and (2) get undetermined cliques over a partial causal skeleton.

1 def test_0x2_graph_pattern_manager():
2 random_seed = 42
3
4 # Randomly generate simulated causal model in a general setting.
5 ground_truth, data = simulate_single_case_causal_model(
6 graph_node_num=5,
7 random_seed=random_seed
8 )
9

10 # Obtain the causal skeleton from ground truth.
11 causal_skeleton = get_skeleton_from_adjmat(adjacency_matrix=ground_truth)
12
13 # ==================== RECOGNIZE MAXIMAL CLIQUES ========================
14
15 display_test_section_symbols(testing_mark='recognize_maximal_cliques')
16
17 maximal_cliques = GraphPatternManager.recognize_maximal_cliques_pattern(
18 causal_skeleton=causal_skeleton
19 )
20
21 print(
22 "* Maximal Cliques Pattern: ",
23 adjust_nested_list_counting_from_one(maximal_cliques)
24 )
25
26 # Display the associating causal skeleton.
27 draw_graph_from_ndarray(
28 array=causal_skeleton,
29 testing_text="skeleton"
30 )
31 plt.show()
32
33 # ============================ GET UNDETERMINED CLIQUES ===============================
34
35 display_test_section_symbols(testing_mark='get_undetermined_cliques')
36
37 # Initialize a graph pattern manager for subsequent tests.
38 graph_pattern_manager = GraphPatternManager(init_graph=causal_skeleton)
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39
40 # Partially orient the causal skeleton based on existing maximal cliques (random_seed=42).
41 determined_clique = maximal_cliques[0] if len(maximal_cliques) > 0 else []
42 for i in determined_clique:
43 for j in determined_clique[i:]:
44 # Partially orient the causal skeleton
45 # (notice: avoid acyclic graphs).
46 graph_pattern_manager.managing_adjacency_matrix[i][j] = 1
47 graph_pattern_manager.managing_adjacency_matrix[j][i] = 0
48
49 # Display the undetermined cliques searching result.
50 undetermined_cliques = graph_pattern_manager.get_undetermined_cliques(
51 maximal_cliques=maximal_cliques
52 )
53
54 print(
55 "* Undetermined Cliques: ",
56 adjust_nested_list_counting_from_one(undetermined_cliques)
57 )
58
59 # Display the associating partial skeleton (adjacency matrix).
60 draw_graph_from_ndarray(
61 array=graph_pattern_manager.managing_adjacency_matrix,
62 testing_text="partial_skeleton"
63 )
64 plt.show()

6.2.3 Test for Module Three (Core Test)

Algorithmic Behavior and Its Encapsulation

The following code snippet is testing for exposing details amidst the fitting procedure of
NonlinearMLC ahead of its encapsulation. Specifically, the code tests the data flow in clique-based
causal inference (_clique_based_causal_inference).

1 def test_0x3_procedure_fitting():
2 random_seed = 42
3 # ================== DATA GENERATION AND GROUND-TRUTH PREPARATION =====================
4
5 # Randomly generate simulated causal models in a general setting.
6 # e.g. hybrid non-linear and Gaussian noise setting
7 ground_truth, dataset = simulate_single_case_causal_model(
8 linear_setting=False,
9 random_seed=random_seed

10 )
11
12 # Initialize nonlinear-mlc ahead of fitting procedure.
13 nonlinear_mlc = NonlinearMLC()
14
15 nonlinear_mlc._dataset = dataset
16 nonlinear_mlc._causal_skeleton_learning(dataset)
17
18 display_test_section_symbols(testing_mark='corresponding_causal_skeleton')
19
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20
21 draw_graph_from_ndarray(
22 array=ground_truth,
23 testing_text='ground_truth'
24 )
25 draw_graph_from_ndarray(
26 array=nonlinear_mlc._skeleton,
27 testing_text='causal_skeleton'
28 )
29 plt.show()
30
31 display_test_section_symbols(testing_mark='corresponding_causal_discovery')
32
33 # ========================= LIST STRUCTURAL PROCEDURE CLIPS ===========================
34
35 # ----------------------- SETUP CLIQUE-BASED INFERENCE FRAMEWORK ----------------------
36
37 # Recognize the maximal-clique pattern based on the causal skeleton.
38 maximal_cliques = GraphPatternManager.recognize_maximal_cliques_pattern(
39 causal_skeleton=nonlinear_mlc._skeleton
40 )
41
42 # Initialize a graph pattern manager for subsequent learning.
43 graph_pattern_manager = GraphPatternManager(
44 init_graph=nonlinear_mlc._skeleton
45 )
46
47 print(
48 "* Whole Patterns of Maximal Cliques: ",
49 adjust_nested_list_counting_from_one(maximal_cliques)
50 )
51
52 print("* Structural Procedure of Clique-Based Inference Starts...")
53
54 # Perform the nonlinear-mlc causal discovery.
55 continue_search = True
56 search_round = 0
57 while continue_search:
58
59 search_round += 1
60 print("* Search Round: ", search_round)
61
62 # Obtain cliques that remain at least one edge undetermined.
63 undetermined_maximal_cliques = (
64 graph_pattern_manager.get_undetermined_cliques(maximal_cliques)
65 )
66
67 print(
68 " * Undetermined Maximal Cliques: ",
69 adjust_nested_list_counting_from_one(undetermined_maximal_cliques)
70 )
71
72 # End if all edges over the cliques have been determined.
73 if len(undetermined_maximal_cliques) == 0:
74 print("* End the Searching Round\n")
75 break



6.2. Module Tests 43

76
77 # ----------------------- DIVE INTO CLIQUE-BASED INFERENCE -----------------------
78 # !!! Notice !!!
79 # Source code within this scope tests
80 # a strategic regression-independence methodology for causal inference,
81 # which may be too technical to be displayed in an introductory report.
82
83 # !!! Notice !!!
84 # Interested technical readers seeking thorough details related to this method
85 # may refer to my paer and github source code at
86 # (line 1678, test_hybrid_algorithms.py, initial version 0.0.0).
87 # ------------------------ DIVE OUT CLIQUE-BASED INFERENCE ------------------------
88
89 print(
90 "* Update Current Determined Paris: ",
91 adjust_nested_list_counting_from_one(determined_pairs)
92 )
93
94 # Orient the determined causal directions
95 # after a search round over maximal cliques.
96 graph_pattern_manager.identify_directed_causal_pair(
97 determined_pairs=determined_pairs
98 )
99

100 # Update the causal adjacency matrix and parent-relations set
101 # after a search round over maximal cliques.
102 nonlinear_mlc._adjacency_matrix = (
103 graph_pattern_manager.managing_adjacency_matrix
104 )
105 nonlinear_mlc._parents_set = (
106 graph_pattern_manager.managing_parents_set
107 )
108
109 # Display the change related to the adjacency matrix immediately.
110 draw_graph_from_ndarray(
111 array=nonlinear_mlc._adjacency_matrix,
112 testing_text='partial_adjacency_matrix'
113 )
114
115 # Check if new causal relations have been determined
116 # after the last round searching
117 newly_determined = (
118 graph_pattern_manager.check_newly_determined(
119 last_undetermined_cliques=undetermined_maximal_cliques
120 )
121 )
122
123 print("* Newly Determined: ", newly_determined)
124
125 # End if none of new causal relation advancing the further search.
126 if not newly_determined:
127 continue_search = False
128 print("* End the Searching Round\n")
129 else:
130 print("* Continue the Next Searching Round\n")
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Data Generation, Causal Discovery, and Evaluation

The other code snippet is testing for numerical and empirical results of the fitting procedure, namely
the average performance (evaluated by the well-known F1 score) of the algorithm on the general
setting with 100 times running (Note: APIs within will be introduced in the next section).

1 def test_0x4_performance_fitting():
2 display_test_section_symbols(testing_mark='repetitive_cases')
3
4 i = 0
5 running_times = 100
6 step = 50 # increasing the space between random seeds to get a general result
7 f1_score_avg = 0
8 f1_score_list = []
9

10 while i < running_times:
11 try:
12 random_seed = copy_and_rename(i + step)
13 np.random.seed(random_seed)
14 random.seed(random_seed)
15
16 i += 1
17
18 # Randomly simulate causal model in a general case: Non-linear and Gaussian noise.
19 generator = Generator(
20 graph_node_num=8,
21 sample=1000,
22 causal_model='hybrid_nonlinear',
23 sparsity=0.5
24 )
25 ground_truth, data = (
26 generator.run_generation_procedure().unpack()
27 )
28
29 # Perform mlc-lingam causal discovery.
30 nonlinear_mlc = NonlinearMLC()
31 nonlinear_mlc.fit(data)
32
33 # Conduct causal graph evaluation by F1 score.
34 f1_score = Evaluator.f1_score_pairwise(
35 true_graph=ground_truth,
36 est_graph=nonlinear_mlc._adjacency_matrix
37 )
38 f1_score_avg += f1_score
39 f1_score_list.append(f1_score)
40
41 print("* Case-{}: Pass with F1-Score: {}".
42 format(i, f1_score))
43
44 except Exception as err_msg:
45 print("* Case-{}: An Error Occurred: {}".
46 format(i, err_msg))
47
48 print("* Average F-1 Score: ", f1_score_avg / running_times)
49 print("* Medium F-1 Score: ", get_medium_num(f1_score_list))
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6.3 Demos and APIs

Reminder: Several friendly hooks here helping direct you back to the previous Section 6.2, the next Chapter 7,
the current Chapter 6, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

6.3.1 Quick Tutorials

1 from hybrid_algorithms import nonlinear_mlc
2 from utilities import scaling # Fine-tune the data generation by scaling.
3 import numpy as np
4 np.random.seed(42)
5
6 ### Data Generation
7 # Simulate latent confounding to the data generation (uncomment the code if you want to test).
8 # pa_c = np.random.normal(size=2000) # Add an unobserved parent variable.
9 # c = np.random.normal(size=2000) + scaling(pa_c, 0.5)

10 # u = scaling(np.cos(c), 1) + scaling(np.random.normal(size=2000), 0.1) + scaling(pa_c, 0.5)
11
12 # Simulate the data generation with non-linear functional relations (without latent confounding).
13 c = np.random.normal(size=2000) # e.g. C is an exogenous variable
14 u = scaling(np.cos(c), 1) + scaling(np.random.normal(size=2000), 0.1) # C -> U
15 e = scaling(np.sin(c), 1) + np.sin(u) + scaling(np.random.normal(size=2000), 0.1) # C->E and U->E
16 dataset_a_without_confounding = np.array([c, e, u]).T
17
18 ### Automation of Causal Inference
19 nonlinear_mlc.fit(dataset=dataset_a_without_confounding)
20
21 ### Graph Visualization
22 array = nonlinear_mlc.adjacency_matrix_
23 draw_graph_from_ndarray(
24 array=array,
25 # Rename the graph nodes to consist with the data column.
26 rename_nodes=['C', 'E', 'U']
27 )
28 plt.show()

Listing 6.4: Quick Tutorials for Causal Discovery in Python.

(a) Causal Graph Without Latent Confounding (b) Causal Graph With Latent Confounding
Figure 6.1: Visualization of Nonlinear Causal Discovery Without and With Latent Confounders (e.g. Whether the
nonlinear causal relationship between 𝑈 and 𝐶 is identifiable from observational (simulated) data).

My Annotation: Three important points worth noting from the code sample in Listing 6.4:
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• The data generation setting essentially reflects our prior Causal Assumption (I’ve introduced
in Section 3.4 in this report). The assumption does not necessarily hold over the established
datasetwewant to analyze. Keeping this inmindmight be helpful for us to objectively interpret
the hypothetical causation learned from the empirical data.

• Insights into Figure 6.1b lie in the Partially Directed Acyclic Graphs (PDAGs) as the output
(I’ve introduced in Section 4.1.1 in this report). That is because the bi-directed edge 𝑈 ↔ 𝐶

that cannot be determined suggests the existence of latent confounder. Remarkably, the 𝐶 → 𝐸

(cause -> effect) is still identifiable, even if the indirected latent confounding 𝐶 ← 𝑝𝑎𝐶 → 𝑈 →
𝐸 (raised by the unobserved parent 𝑝𝑎𝐶) persists between 𝐶 and 𝐸 (remind that this is the key
finding discussed in our work, which has been introduced in Section 5.2).

• We fine-tune the scale of the ”causal strength” among variables by the scaling function since
theory-based causality-algorithms are always sensitive to the empirical data. This is excus-
able, as it is known that the causal assumption such as causal faithfulness (I’ve introduced in
Section 3.3.5 in this report) is untestable (thus not-guaranteed) in practical.

6.3.2 APIs Overview and Close-up

The previous Section 6.3.1 showcases a single case of causal discovery through manual parameter
assignment on simple structural data generation. Table 6.1 in this section further provides automatic
utilities available to the task, with particularly an API close-up for the usage of causality-based data
generation shown in Table 6.2.

Table 6.1: APIs as to the Workflow in Causal Discovery.

APIs Category
APIs Description

Reference/Class Calling Interface/Parameter Setup

Hybrid-based Algorithms
NonlinearMLC (X. Chen et al., 2023b) hybrid_algorithms.NonlinearMLC
MLCLiNGAM (W. Chen et al., 2021a) hybrid_algorithms.MLCLiNGAM

SCMs Generator
CAMs (Bühlmann et al., 2014) Generator.run_data_generation
ANMs (Hoyer et al., 2008) -- / setup="causal model"

LiNGAM (Shimizu et al., 2011) -- / setup="causal model"

Causal Graph Evaluator
Structural Precision Evaluator.precision_pairwise
Structural Recall Evaluator.recall_pairwise

Structural F1 Score Evaluator.f1_score_pairwise

Table 6.2: An API close-up for the Usage of the SCMs Generator in Table 6.1.

Parameter Name Parameter Description

graph_node_num (int) Number of the vertex in a causal graph (ground-truth), which represents the
number of the variable given a causal model (recommend: < 15)[required].

sample (int) Size of the dataset generated from the SCMs (recommend: < 10000)[required].
causal_model (str) Structural-identifiable SCMs simulation in light of related literature, e.g.

LiNGAM (str: lingam), CAMs/ANMs (str: hybrid_nonlinear).
noise_type (str) Structural-identifiable SCMs simulation in light of related literature. e.g. Gaus-

sian (str: Gaussian), uniform distribution as non-Gaussian (str: non-Gaussian).
sparsity (float) Control the sparsity of a causal graph (ground-truth) (recommend: 0.3).



7
RESULTS, DISCUSSION, AND RELATED WORK

This section recapitulates three of the implications related to my undergraduate research work (X.
Chen et al., 2023b). Section 7.1 introduces a professional software that integrates implementation
of the causality algorithms mentioned in Section 5.5 and Section 6.1. Section 7.2 introduces a sim-
ple application as to causal discovery over fMRI (functional Magnetic Resonance Imaging) data, in
particular with delineation on how to evaluate performance of causal discovery. Finally, Section 7.4
introduces the outline of the temporal background for future work in causal discovery.

Reminder: Several friendly hooks here that direct you back to the previous Chapter 6, the next Chapter 8,
the table of Contents, or the Reading Guidance of This Report for Different Audiences.

7.1 CADIMULC: A Light Python Package for Hybrid Causal Discovery

CADIMULC is a Python package standing for: CAusal DIscovery withMultiple Latent Confounders.
The address of online user interface and document with respect to the package is:
https://xuanzhichen.github.io/cadimulc/.

7.1.1 Technical Support

The package development partially relies on causal-learn (Zheng et al., 2024), an open-source python
library for causal discovery. Independent modules such as (conditional) independence tests facili-
tates our custom needs in relation to the development of hybrid-based algorithmic framework.

7.1.2 Design Philosophy

CADIMULC aims to provide easy-to-use light APIs to learn an empirical causal graph from generally
raw data with relatively efficiency. It integrates implementations of hybrid-based approaches involv-
ing the popular MLC-LiNGAM algorithm (W. Chen et al., 2021a), along with the ”micro” workflow
of causal discovery, such as data generation, learning results evaluation, and graphs visualization.

Additional Notes: The MLC-LiNGAM approach (in IEEE-TNNLS, 2021) (W. Chen et al., 2021a)
with its complete Python implementation are available in Appendix B.

7.1.3 Utilities, Demos, and APIs

To ensure coherence and completeness for Chapter 6 ”Programming (Code Samples)”, technical infor-
mation related to the package is uniformly placed in Section 6.3.2 ”APIs Overview and Close-up”.

47
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7.2 Inferring Causation Among Brain Regions over fMRI Data

Reminder: Several friendly hooks here helping direct you back to the previous Section 7.1, the next Section 7.3,
the current Chapter 7, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

7.2.1 Neuroscience Background

The established fMRI dataset1 in neuroscience is well-known for its mathematical basics of (non-
linear) dynamic causal models (Friston et al., 2003), with the nonlinearity setting catering to our
research interest in this work. We then selected the fMRI-dataset (NetSim-3) that characterizes the
temporal signals sampled from individuals (left panel in Figure 7.1), and that entails causal interac-
tions among 15 distinct spatial regions (Regions of Interest, ROI) (right panel in Figure 7.1).

Hence, concerning the research topic in hidden confounding, the goal is to discover the causal struc-
tures (e.g. the mapping networks based on brain functions) over brain regions (denoted as the
variable 𝑋𝑖) under the circumstances with omitted variables (shown red in Figure 7.1).

Figure 7.1: Illustration of the causal structure (with latent confounders) with respect to ROI based on fMRI data.
Omitted regions (namely the latent confounder) are marked as red color (Image reprinted from X. Chen et al., 2023b).

7.2.2 Experimental Summary

Specifically, we first prioritized an increasing sequence of variables associating with brain regions
(e.g. 𝑥1 , 𝑥6 , and 𝑥11) as latent confounders by omitting them from original dataset. Then, given the
fact that primary causal discovery methodologies discussed in this report are in the non-temporary
category, we further reconstructed a non-temporal dataset via random sampling by giving a proper
width-fixed time window. The dataset was processed by sampling with a size of 1000 from ran-
domly selective 5 individuals, given width-fixed time windows with length of 200. Ultimately, we
performed causal discovery approaches to the dataset.

7.2.3 Causal Discovery Baseline

We use the following causal discovery algorithms as the baseline methods: PC (Spirtes et al., 2000),
FCI (Spirtes et al., 1991), RESIT (Peters et al., 2014), and CAM-UV (Maeda et al., 2021). PC is a
constraint-based approach assuming causal sufficiency. Accordingly, FCI servers as an extension
of PC algorithm, applying to causal inference with latent confounders. RESIT and CAM-UV are
1 https://www.fmrib.ox.ac.uk/datasets/netsim/index.html

https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
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categorized to functional-based approaches. As a variant of DirectLiNGAM (Shimizu et al., 2011),
RESIT assumes that non-linear additive models hold as for the data generation without presence
of latent confounders. CAM-UV (Maeda et al., 2021), however, further assumes the existence of
(general) unobserved variables, tending to avoid the incorrect causal inference. The usages of the
baseline methods stated above refer to the python package causal-learn2.

7.2.4 Causal Discovery Evaluation

We use precision, recall, and F1 score as the evaluation indicators for the estimated causal graphs
reconstructed by different algorithms. Amidst the experiment, notice that we only extracted directed
edges from the adjacency matrix or directly obtained causal pairs for calculating the indicators.

Before introducing typical metrics, it is notable to outlines basic evaluation modules by analo-
gizing classification metrics (in realms of machine learning) to causal structures discovery: True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). Common eval-
uationmetrics defined around the comparison and trade-off between the estimated causal graph and
the true causal graph (ground truth) will then be listed in the following.

• TP and FP can be seen as a measure of the causation identified in the estimated causal graph.

* TP can be analogized to the total number of variable pairs (causal edges) identified in the
estimated causal graph that are consistent with the causal relationships present in the true
causal graph, quantifying the correctly estimated causal relationships between variables.

* FP can be analogized to the total number of incorrectly identified variable pairs in the
estimated causal graph that do not have causal relationships in the true causal graph.

• TN and FN are measures of the causation not identified in the estimated causal graph.

* TN can be analogized to the total number of variable pairs in the estimated causal graph
that are not identified but are consistent with the absence of causal relationships in the
true causal graph, quantifying the independency correctly estimated between variables.

* FN can be analogized to the total number of variable pairs (causal edges) that are missed
in the estimated causal graph but have causal relationships in the true causal graph.

• Precision refers to the proportion of correctly identified causal relationships in the estimated
causal graph among all estimated causal relationships. In other words, the higher the preci-
sion in the estimated causal graph, the more reliable the identification of causal relationships
between variable pairs in the estimated causal graph.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (7.1)

• Recall refers to the proportion of correctly identified causal relationships in the estimated
causal graph among all true causal relationships. Alternatively, the higher the recall in the
estimated causal graph, the more it can encompass the causation over the true structure.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (7.2)

2 https://causal-learn.readthedocs.io/en/latest/

https://causal-learn.readthedocs.io/en/latest/
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• 𝑭1 Score is the harmonic mean of precision and recall, integrating the advantages of both and
serving as an overall measure of the effectiveness of causal discovery.

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (7.3)

7.2.5 Experimental Finding

Notice that the relative simplicity of causal structures implied by fMRI data reduces the Nonlinear-
MLC algorithm’s advanced maximal-clique-based causal inference (described in Section 5.5 in this
report) into the directed pairwise causal inference. Meanwhile:

• the CAM-UV algorithm (Maeda et al., 2021) might infer more hypothetical causal connections
(including the redundant connections) without the foundation of the causal skeleton, which
rendered its performance with marginally higher recalls but lower precision than ours.

• Despite of the well-perform precision by the FCI algorithm (Spirtes et al., 1991), it actually
determined a small fraction of causal directions that contributes little to the recall.

Hence, we conclude that performance of the Nonlinear-MLC algorithm inclines to a slight advan-
tage in the comprehensive F1 score with practicably lower computational time. The aforementioned
analysis is illustrated in the following Figure 7.2.

Figure 7.2: Performance evaluations in terms of precision, recall, and f1-score on fMRI-dataset (NetSim-3). (Image
reprinted from X. Chen et al., 2023b).

7.2.6 Additional Simulated Experiment

We also technically simulated the causal data generation to test our algorithm over synthetic dataset.
Details referring to it can be found in my work (X. Chen et al., 2023b) (Section 5.2 Performance on
Simulated Causal Models (Non-linear MLC) Data).

Briefly speaking, Figure 7.3 illustrates the average performance of Nonlinear-MLC compared with
baseline methods. Except for the case of causal sufficiency — precision of our method is slightly
lower than the CAM-UV algorithm — Nonlinear-MLC outperforms others in presence of latent con-
founders. Table 7.1 further demonstrates that ourmethod is robust against the changes as to different
sample sizes and dimensions.
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Figure 7.3: Performance evaluations on simulated data with different numbers of latent confounders.

Table 7.1: Performance on Simulated Causal Models (NonlinearMLC). Sensitivity as to samples and dimensions, along
with associating computational cost (Image reprinted from X. Chen et al., 2023b).

Algorithm
F1 Score Computational Time

Sample Size Dimension Number of Latent Confounder
500 1000 1500 5 10 15 0 1 2 3

PC 0.347 0.385 0.421 0.322 0.385 0.372 0.05 0.07 0.05 0.01
FCI 0.217 0.261 0.473 0.304 0.261 0.197 0.18 0.21 0.17 0.17

RESIT 0.152 0.169 0.174 0.277 0.169 0.124 29.78 29.73 29.82 29.86
CAMUV 0.265 0.374 0.586 0.625 0.374 0.419 14.7 17.59 15.14 15.16

NonlinearMLC 0.623 0.661 0.735 0.851 0.661 0.627 9.42 10.62 11.26 11.67

7.3 Question-Oriented Informal Discussion

Since the schedule of publishing this paper was eventually cancelled, the light discussion in this sec-
tion were additionally listed. The following question-oriented discussion will specify supplemental
perspectives as for this paper, by reviewing some of the equally important ideas (from my personal
point of view) during my journey of finishing the work.

Reminder: Several friendly hooks here helping direct you back to the previous Section 7.2, the next Section 7.4,
the current Chapter 7, the table of Contents, or the Reading Guidance of This Report for Different Audiences.

7.3.1 Contribution on Causal Identification

1. Does the work in this paper truly tackle the issue of ”Multiple Latent Confounders”?

No quite, I have to admit. Initially I just wanted to ”extend” the repertoire of our previous work
MLC-LiNGAM [W. Chen et al., 2021a], an causal discovery algorithm serves in a linear spectrum,
by utilizing the conventional (non-linear) additive noise models (ANMs). To this end, I kept that
abbreviation ”MLC” (Multiple Latent Confounders) for echoing the series of our work.

However, this might cause a slight exaggeration for the Nonlinear-MLC algorithm in this paper be-
cause I gradually found that non-linearity in causal inference is tricky than what I have imagined.
The ”idea of extension” did not fully make sense due to the fact that the (linear) causal discovery
strategies, which has paid off inMLC-LiNGAM, cannot just directly fit forNonlinearMLC. Technically
speaking, in presence of multiple latent confounders, a LiNGAM (Linear Non-Gaussian Additive
Model) would tend to hold after linear regression, whereas an ANM (non-linear Additive Noise
Model) is distortion-prone via ”inadequate non-linear regression”. In essence, this therein results in
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the marjor difference between the MLC-LiNGAM and the Nonlinear-MLC algorithm.

Thus, it is partially the reason why I spent the time than anticipation on this paper. With the help
from my advisor Wei Chen, fortunately, we alternatively discovered the Latent-ANMs lemma. De-
spite the lemma primarily functions as a ”fine-grained” theory, it might be simper and more dis-
tinctive in articulating the non-linear identification, which describes the relations between the cause-
variable and the other unobserved patents of the effect-variable.

7.3.2 Limitation on Causal Algorithms

2. What is the limitation of the Nonlinear-MLC algorithm?

Though I have featured Nonlinear-MLC with emphasis on its theory-guided advantages, such as
”maximal clique patterns” and ”hybrid methodology”, I would like to say the meaning of the al-
gorithm is more about the practicable causal discovery program on its own.

The strategy of maximal-clique-based causal inference, for instance, do strength the empirical per-
formance of Nonlinear-MLC, whereas the algorithm in practice (according to my observation while
developing the program) does not necessarily obey this ”fine-grained” theoretical strategies all the
way (e.g. mostly a maximal clique includes the vertexes that are not more than 3, excluding the
necessity for comprehensive analysis given such a simple structure). On top of that, restricted in a
established hybrid-based framework,Nonlinear-MLCmight sometimes become susceptible to the so-
called cascading errors—an incorrect estimated causal skeleton (in the first stage of the algorithm)
can compromise the subsequent non-linear regression and independence tests.

Bottomline, I think the ideas of Nonlinear-MLC, good or bad, would largely depend on the feedback
from users in different fields who want to give the non-linear causal inference a shot. By apply-
ing Nonlinear-MLC, I wish the users more or less are able to get a rough understanding about the
causation with respect to the field-related data they are interested in.

7.3.3 Future Work

3. Would the algorithm be extended to apply for time series data in the future work?

No, and I would not recommend that my follow-up work is done to serve as a ”time-series version”
of Nonlinear-MLC, though it might be a good way to quickly grasp the idea and yield another paper
for utilitarian purpose. Temporal causal discovery has recently been a popular topic, but I wish we
could dig deeper instead of directly launching a parallel extension. However, we did have a work
(X. Chen et al., 2023a) partially investigating the latest progress with respect to time-series causal
discovery, which I will briefly introduce in the next section.

7.4 Relevant Work: Introduction to Temporal Causal Discovery

Reminder: Several friendly hooks here helping direct you back to the previous Section 7.3, the next Chapter 8,
the current Chapter 6, the table of Contents, or the Reading Guidance of This Report for Different Audiences.
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In recent years, high-volume and high-dimensional data have been continuously developing. Time
series data, as an ordered sequence of real values collected over time, often carries real-world infor-
mation. Over the past few decades, numerous time series analysis methods based on various tasks
such as classification (Ismail Fawaz et al., 2019; Lines et al., 2014), clustering (Aghabozorgi et al.,
2015; Li et al., 2011), and forecasting (Wang et al., 2019; Weigend, 2018) have emerged. Among
these, Temporal Causal Discovery (TCD) based on observational data — identifying causal-and-
effect between different time series without relying on intervention — is also a notable task.

When it comes to the context of time series, in particular considering the autocorrelation among vari-
ables, nevertheless, causal graphs are typically aggregated or expanded along the time axis based
on time windows, which further categorizing them into: Summary Causal Graphs, Window Causal
Graphs, and Full-Time Causal Graphs. Different types of temporal causal graphs serve as the ob-
jectives for TCD in numerous systems of natural sciences or human society, such as climate science
(Stips et al., 2016), efficacy assessment (Bica et al., 2020), and economic markets (Hiemstra et al.,
1994), adding complexities as to dynamic systems analysis.

Figure 7.4: A Time-Series-Based System Lacking Consideration of Causality (Thought Experiments)(Image reprinted
from X. Chen et al., 2023a).

On the other hand, time-series-based systems that lack consideration of causality may mislead
people to draw incorrect or even absurd conclusions. For example (Figure 7.4), the sales of ice
cream in urban areas during the summer and the rise in local crime rates are clearly two time se-
ries variables that intuitively seem unrelated (non-causal), yet they may exhibit a high statistical
correlation. In fact, merely considering the time series of ice cream sales and crime rates as observa-
tional data is INCOMPLETE. A reasonable explanation is that the unobserved data related to urban
temperatures (latent confounder) leads to this biased result; baking heat during urban hot summers
simultaneously stimulate increases in both ice cream sales and potential crime rates.

So far, several reviews (Moraffah et al., 2021; Assaad et al., 2022; Gong et al., 2023; Hasan et al., 2023)
have comprehensively summarized the progress in TCD based on observational data from uniquely
different perspectives, including causal-effect analysis (Moraffah et al., 2021), practical applications
of various causality methods (Assaad et al., 2022), data type of event-sequence(Hasan et al., 2023),
and the integration of non-temporal and temporal causal discovery issues (Hasan et al., 2023). How-
ever, topics regarding TCD based on incomplete data — observational data with hidden variables
or missing samples — are still insufficient. Therefore, our work (X. Chen et al., 2023a) provides a
survey that is meant to investigate the latest research progress in relation to this kind of topic.
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MY HUMBLE AND TRIVIAL OPINIONS TO CAUSALITY

Were I to summarize my experience, reflection, and even audacity regarding causality and AI — or
Causal Discovery in particular — the first sentence comes to my mind is: The quintessence of the
theoretically inferred causation rests metaphorically on our ignorance against God or Nature.

By ignorance I mean that even a prophetic model may need not be anticipated to carry omniscience.
A Bayesian model characterizes uncertainty, virtuous in being capable of unrestrictedly predicting
any relationship through an almighty inverse formula complying with calculation logic. A causal
model, by contrast, characterizes certainty, meticulous in specifying only the irreversible ”listening-
to” relationship while encapsulating any other unspecificness into a humble term that represents
disturbance or noise from ”God” or ”Nature”. Admittedly, physics and algebra have told us that
nearly every science in formulae demands a backup from the equality sign—meaning, the so-called
”listening to” asymmetry is tenuous. Yet there is a light in the tunnel. It’s not longer easy for one
to swap terms on both sides of the equality sign, given an unspecific term that intrudes the purity
and balance of the equation. If one struggles to inversely fit such unspecificness via untangling its
composition, then in a metaphorical sense, he or she may be viewed as boastly demanding the om-
niscience that only ”God” or ”Nature” possesses.

A better vantage point, regarding the aforementioned conceptual causation, lies in the context of
probability, a language that characterizes uncertainty. Since our ignorance within a causal model
implies the model’s tolerance for marginally uncertain accidents, all authoritative Causal Discovery
methodologies operate resembling a behavior of unveiling the distribution regarding such ”acci-
dents” out of the original data distribution, and studies their probabilistic property such as indepen-
dency — akin to the by-product of causation (e.g. random accidents may imply independency).

Causal Discovery results in causal graphs as a blue print representing the causal model. Must such
a blue print, however, to be in form of a 2-dimensional diagram that one can simply draw on a white
sheet of paper, as what I have been taught in Causal Discovery? I really don’t know. I may boldly
envision the blue print present even at an abstract level with an infinite scale, as long as fromwhich it
makes it effortless (less dependent upon data) for AI to retrieve a kind of deterministic relationship.
By effortlessness I also imply a potential computational process completed within a blink of eyes,
probably propelled by an established parametric model on top of the blue print. We presume the
blue print exists as a simple ”structural” avatar relative to that hidden parametricmodel. This ”struc-
tural” nature navigates AI through how to unveil prior parameters bottom-up through the structure,
how to tweak the model causally, and how to convey posterior parameters top-down.
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Finally, with a little bit digression, I admit that, at least for me, it is Judea Pearl’s personal charisma
that by itself adds a kind of eternally appealing sense into my understanding on causality. Pearl left
me with a lasting impression as someone who is not only a Turing Award winner and an inventor
of Bayesian Networks and Causal Models, but a miraculous survivor during his military service, a
father who lost his son and who bore witness to human intolerance, as well as a life-time pursuer
for human-level AI but has found himself helpless nowadays in contributing to this argument. My
poor knowledge about causality thus become convoluted, perceptual, and even kind of being philos-
ophized at the end, with the person behind it. Therefore, I couldn’t find any other way to wrap up
my emotional personal thoughts in this Chapter — also in the end of this report — better than para-
phrasing his resonating advice to youngsters and his hope towards his legacy left for the next decade:

Words by Judea Pearl (he’s 88 years old in 2024):

Ask yourself questions and solve them in your way, as opposed to merely accepting ”NO” for an answer.
Questions coming out of your brain are never dumb — Follow them, and try to understand them in
your own way. For example, there is a lot of inertia in the academia that is slowing down science. Dare to
”against” your professor. I wrote the book of why (Pearl et al., 2018) in order to democratize common sense, in
order to instill rebellious spirits in students, so they wouldn’t wait until the professor gets everything down.

In terms of me, I already have a tombstone carved: The Fundamental Law of Counterfactuals. It’s a simple
equation, putting causal counterfactuals in terms of a surgery on causal models — because everything follows
from there. If you get that, all the rest follow. I can also die in peace, and my students can derive all my
life-time knowledge by mathematical means.
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A

APPENDIX A

A.1 Proof of Lemma 1

We proved Lemma 1 by transferring variable descriptions beforehand — from the in-
tuitive pairwise cause-and-effect 𝐶 → 𝐸 into the standard structure causal models
(SCMs) with the variables 𝑿 = {𝑥1 , 𝑥2 , . . . , 𝑥𝑑}. The corresponding Lemma relative to
SCMs is stated as the following.

Lemma 3 (SCMs): Assuming data generation procedures are consistent with Equation (5.3),
the pairwise causal dependence between the effect-variable 𝑥𝑖 and one of the associating cause-
variables 𝑥 𝑗 ∈ 𝒑𝒂𝒊 is identifiable if and only if

{𝜉𝑖 ⊥⊥ 𝑥 𝑗} ∧ {𝜉𝑖 := 𝜀𝑖 +
∑

ℓ𝑘∈𝒑𝒂 𝑖

𝑓𝑖𝑘(ℓ𝑘)} (A.1)

is satisfied, where 𝜉𝑖 is denoted as an extensive noise (e.g. compared to the original noise 𝜀𝑖 that
has satisfied 𝜀𝑖 ⊥⊥ 𝑥 𝑗). The extensive noise 𝜉𝑖 further models the multiple latent confounding
from the multiple unobserved parents 𝒑𝒂 𝑖 .

Taking the potential latent confounders ℓ𝑘 ∈ 𝒑𝒂 𝑖 into consideration, Lemma 1 (SCMs)
provides an independent condition to identify the unambiguous causal directions
{𝑥 𝑗 → 𝑥𝑖 | 𝑥 𝑗 ∈ 𝒑𝒂 𝑖}. Next, suppose we use 𝑥 𝑗 → 𝑥𝑖 (𝑥 𝑗 = 𝒑𝒂 𝑖) to represent any
of the identifiable pairs satisfying Lemma 1 (SCMs).

Notice that the proof of Lemma 1 (SCMs) is equal to prove that the Nonlinear-MLC
causal model only holds in the causal direction 𝑥 𝑗 → 𝑥𝑖 . According to Equation (5.3),
we further formalize the generation procedure as to a correct causal modelℳ1:

ℳ1 : 𝑥𝑖 := 𝑓𝑖 𝑗(𝑥 𝑗) + ℱ𝑖(ℓ 𝑖) + 𝜀𝑖 . (A.2)

Where ℱ𝑖(ℓ 𝑖) = ∑
ℓ𝑘∈𝒑𝒂 𝑖

𝑓𝑖𝑘(ℓ𝑘). Without loss of generality, we slightly distinguish the
reversed non-linear function and the latent noise, in the sense that an inversed (incor-
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rect) causal modelℳ2 satisfies

ℳ2 : 𝑥 𝑗 := 𝑓𝑗𝑖(𝑥𝑖) + ℱ̃𝑗(ℓ 𝑗) + 𝜀𝑗 . (A.3)

We factorize the marginal distribution (with multiple unobserved parents) entailed
by both models:

𝑝(𝑥𝑖 , 𝑥 𝑗) =
∑
ℓ

𝑝(𝑥𝑖 , 𝑥 𝑗 | ℓ ) 𝑝(ℓ ) =

∑

ℓ 𝑖 𝑝(𝑥𝑖 | 𝑥 𝑗 , ℓ ,ℳ1) 𝑝(𝑥 𝑗 | ℓ ,ℳ1) 𝑝(ℓ | ℳ1),∑
ℓ 𝑗 𝑝(𝑥 𝑗 | 𝑥𝑖 , ℓ ,ℳ2) 𝑝(𝑥𝑖 | ℓ ,ℳ2) 𝑝(ℓ | ℳ2).

(A.4)
Notice that the independent noise 𝜀 is generalized into (the possibly dependence) 𝜉,
along with the independence 𝜉𝑖 ⊥⊥ 𝑥 𝑗 entailed by the identifiable causal modelℳ1:

𝜉 = ℱ (ℓ) + 𝜀 =
∑
ℓ𝑘∈𝒑𝒂

𝑓𝑘(ℓ𝑘) + 𝜀, 𝜉𝑖 ⊥⊥ 𝑥 𝑗 . (A.5)

Given likelihood functions ℒ = log 𝑝(·) and injective relations between 𝜉𝑖 and 𝑥 𝑗 (𝜀𝑗
and 𝑥𝑖), combining Equations (A.4) and (A.5) yields

ℒ(ℳ) =

ℒ𝜉𝑖 (𝑥𝑖 − 𝑓𝑖 𝑗(𝑥 𝑗)) + ℒ𝑥 𝑗 (𝑥 𝑗), ℳ =ℳ1 ,

ℒ𝜀𝑗

(
𝑥 𝑗 − 𝑓𝑗𝑖(𝑥𝑖) − ℱ̃𝑗(ℓ)

)
+ ℒ𝑥𝑖 (𝑥𝑖), ℳ =ℳ2.

(A.6)

Additionally, we herein emphasize that the strict independence 𝜉𝑖 ⊥⊥ 𝑥 𝑗 ensures
the expression of ℒ(ℳ = ℳ1) in Equation (A.6). In other words, the conditional
independence (between 𝜉𝑖 and 𝑥 𝑗) is insufficient to yield that expression in form of
regression-based replacement (e.g. replace ℒ𝑥𝑖 |𝑥 𝑗 ,ℓ𝒊 (𝑥𝑖) in eq.(A.4) by ℒ𝜉𝑖 (𝑥𝑖 − 𝑓𝑖 𝑗(𝑥 𝑗))
in eq.(A.6)). The reason is given by the non-linearity, which implies that the vari-
ables’ non-linear interaction, compared with linearity, will compromise the effect of
regression (recall the Introduction and Section 3 in the paper).

Based on the formalism shown in Equation (A.6)), we continue the rest of the proof
framework by following the ANMs identification [Hoyer et al., 2008]. Assuming 𝑓 is
third order differentiable we obtain

𝜕

𝜕𝑥 𝑗

(
𝜕2ℒ(ℳ)/𝜕𝑥2

𝑗

𝜕2ℒ(ℳ)/𝜕𝑥𝑖𝜕𝑥 𝑗

)
= 0, ℳ =ℳ2. (A.7)

Notice that this is not hold whenℳ =ℳ1. To see this, imply

𝜕2ℒ(ℳ1)
𝜕𝑥 𝑗 𝜕𝑥𝑖

= − 𝑓 ′𝑖 𝑗ℒ′′𝑥𝑖 , (A.8)

and
𝜕2ℒ(ℳ1)

𝜕𝑥2
𝑗

= ℒ′′𝜉𝑖 ( 𝑓 ′𝑖 𝑗)2 − ℒ′ 𝑓 ′′𝑖 𝑗 + ℒ′′𝑥 𝑗 , (A.9)
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then we obtain the analogical differential equation (compared with Equation (A.7))
constructed byℳ1:

𝜕

𝜕𝑥 𝑗

©«
𝜕2ℒ(ℳ1)

𝜕𝑥2
𝑗

𝜕2ℒ(ℳ1)
𝜕𝑥𝑖𝜕𝑥 𝑗

ª®®¬ = −2 𝑓 ′′𝑖 𝑗 +
ℒ′𝜉𝑖 𝑓 ′′′𝑖 𝑗 − ℒ′′′𝑥 𝑗
ℒ′′𝜉𝑖 𝑓 ′𝑖 𝑗

+
ℒ′′𝑥 𝑗 𝑓 ′′𝑖 𝑗 − ℒ′𝜉𝑖 ( 𝑓 ′′𝑖 𝑗 )2
ℒ′′𝜉𝑖 ( 𝑓 ′𝑖 𝑗)2

+
ℒ′𝜉𝑖ℒ′′′𝜉𝑖 𝑓 ′′𝑖 𝑗 − ℒ′′𝑥 𝑗ℒ′′′𝜉𝑖

(ℒ′′𝜉𝑖 )2
.

(A.10)
Notice that here we omit the variable inside the function notation.

In order to vanish Equation (A.10) (if both of the forward causal modelℳ1 and back-
ward causal modelℳ2 hold over the joint probability 𝑝(𝑥𝑖 , 𝑥 𝑗)), we are supposed to
obtain the following (linear inhomogeneous) differential equation [Hoyer et al., 2008]
for every fix 𝑥𝑖 given ℒ′′𝜉𝑖 · 𝑓 ′𝑖 𝑗 ≠ 0. It is given by

ℒ𝑥 𝑗 (𝑥 𝑗)′′′ = ℒ𝑥 𝑗 (𝑥 𝑗)′′𝜙(𝑥 𝑗 , 𝑥𝑖) + 𝜂(𝑥 𝑗 , 𝑥𝑖) , (A.11)

where 𝜙(𝑥 𝑗 , 𝑥𝑖) and 𝜂(𝑥 𝑗 , 𝑥𝑖) are defined by

𝜙(𝑥 𝑗 , 𝑥𝑖) = −
ℒ′′′𝜉𝑖 𝑓 ′𝑖 𝑗
ℒ′′𝜉𝑖

+
𝑓 ′′𝑖 𝑗
𝑓 ′𝑖 𝑗

, (A.12)

and

𝜂(𝑥 𝑗 , 𝑥𝑖) = −2ℒ′′𝜉𝑖 𝑓 ′′𝑖 𝑗 𝑓 ′𝑖 𝑗 + ℒ′𝜉𝑖 𝑓 ′′′𝑖 𝑗 +
ℒ′𝜉𝑖ℒ′′′𝜉𝑖 𝑓 ′′𝑖 𝑗 𝑓 ′𝑖 𝑗
ℒ′′𝜉𝑖

−
ℒ′𝜉𝑖 ( 𝑓 ′′𝑖 𝑗 )2

𝑓 ′𝑖 𝑗
. (A.13)

Therefore, from Equation (A.11) - (A.13) we conclude that the hypothetical ℒ𝑥 𝑗 ad-
mitting a backward causal model is limited in a three-dimensional, which contradicts
our priority that all possible ℒ𝑥 𝑗 should be infinite-dimensional [Hoyer et al., 2008].
That is, from the perspective of generic, the Nonlinear-MLC causal model only holds
in 𝑥 𝑗 → 𝑥𝑖 and can not be inverted.

A.2 Proof of Corollary 1

Likewise, Corollary 1 was proven provided the context of standard structure causal
models (SCMs). The associating Corollary with respect to SCMs is claimed as the
following.

Corollary 2 (SCMs): Assuming data generation procedures are consistent with Equation
(5.3), the pairwise causal dependence between the effect-variable 𝑥𝑖 and one of the associating
cause-variables 𝑥 𝑗 ∈𝓜 𝑖 𝑗 is identifiable if and only if

{𝑥𝑖 − ℛ𝑖(𝓜∗
𝑖 𝑗 ∪ ˆ𝒑𝒂 𝑖)} ⊥⊥ 𝑥 𝑗 (A.14)

is satisfied, where ℛ(·) denotes the non-linear regressor, 𝓜∗
𝑖 𝑗 := 𝓜 𝑖 𝑗\ {𝑥𝑖}, and ˆ𝒑𝒂 𝑖 ⊆ 𝒑𝒂 𝑖 .

In the view of computing memory in (constraint-based) algorithms, 𝒑𝒂 denotes the determined
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parent relations, whereas 𝓜 𝑖 𝑗 represent the variables (including 𝑥 𝑗 and 𝑥𝑖) whose relations
remain undetermined within the possible maximal cliques.

Providing identifiable causal directions {𝑥 𝑗 → 𝑥𝑖 | 𝑥 𝑗 ∈ 𝓜 𝑖 𝑗}, we assume the causal
direction as 𝑥 𝑗 → 𝑥𝑖 to represent any of the identifiable pairs satisfying Corollary 1
(SCMs). The data generation process of the variable 𝑥𝑖 can be formulated as

𝑥𝑖 := 𝑓𝑖 𝑗(𝑥 𝑗) +
∑

𝑥𝑡∈𝒑𝒂 𝑖\{𝑥 𝑗}
𝑓𝑖𝑡(𝑥𝑡) +

∑
ℓ𝑘∈𝒑𝒂 𝑖

𝑓𝑖𝑘(ℓ𝑘) + 𝜀𝑖 , (A.15)

According to the causal additive models (CAMs) [Bühlmann et al., 2014], the em-
pirical (non-linear) regressor ℛ𝑖 (for the explaining variable 𝑥𝑖) of general additive
models (GAMs) [Maeda et al., 2021] is defined by

ℛ𝑖 := 𝑔𝑖 𝑗(𝑥 𝑗) +
∑

𝑥𝑡∈𝒑𝒂 𝑖

𝑔𝑖𝑡(𝑥𝑡) +
∑

𝑥𝑟∈𝓜∗
𝑖 𝑗

𝑔𝑖𝑟(𝑥𝑟), (A.16)

where 𝑔(·) denotes the empirical regression function selected from GAMs.

Since ℛ𝑖 is decomposed into several specific parts to cancel the effect of hypothetical
cause-variables, we substitute the regressor ℛ(·) in Corollary 1 (SCMs) with Equation
(A.15) and (A.16). We conclude

𝐻𝑖(𝑥) ⊥⊥ 𝑥 𝑗 , (A.17)

where 𝐻𝑖(𝑥) is defined by

𝐻𝑖(𝑥) :=
{
𝑓𝑖 𝑗(𝑥 𝑗) − 𝑔𝑖 𝑗(𝑥 𝑗)

} + 
∑

𝑥𝑡∈𝒑𝒂 𝑖\{𝑥 𝑗 }
𝑓𝑖𝑡(𝑥𝑡) − {

∑
𝑥𝑡∈𝒑𝒂 𝑖

𝑔𝑖𝑡(𝑥𝑡) +
∑

𝑥𝑟∈𝓜∗
𝑖 𝑗

𝑔𝑖𝑟(𝑥𝑟)}
 + {

∑
ℓ∈𝒑𝒂 𝑖

𝑓𝑖𝑘(ℓ𝑘) + 𝜀𝑗},

(A.18)
We highlight that the variable set (including 𝑥𝑖) consisting of a maximal cliqueℳ𝑖 𝑗

might involve the correct (but undetermined) parent relations in the view of algorith-
mic memory:

∃ 𝑥𝑟 ∈ ℳ∗𝑖 𝑗 , 𝑥𝑟 ⊥̸⊥ 𝑥𝑖 ⇒ 𝑥𝑟 ∈ 𝒑𝒂 𝑖 . (A.19)

In light of Lemma 1, the anticipant independence (recall Section 4.1 in the paper) is
defined as

𝑥 𝑗 ⊥⊥ 𝒑𝒂 𝑖\{ ˆ𝒑𝒂 𝑖 ∪ 𝓜∗
𝑖 𝑗}. (A.20)

We then consider three of the independence combinations of 𝐻𝑖(𝑥) relative to Equa-
tion (A.17). We have

(1) 𝑓𝑖 𝑗(𝑥 𝑗) − 𝑔𝑖 𝑗(𝑥 𝑗) = 0, which is ideally required by the GAMs regression.
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(2) 𝑍𝑖(𝑥) ⊥⊥ 𝑥 𝑗 , where 𝑍𝑖(𝑥) is defined by

𝑍𝑖(𝑥) :=
∑

𝑥𝑡∈𝒑𝒂 𝑖\{𝑥 𝑗}
𝑓𝑖𝑡(𝑥𝑡) − {

∑
𝑥𝑡∈𝒑𝒂 𝑖

𝑔𝑖𝑡(𝑥𝑡) +
∑

𝑥𝑟∈𝓜∗
𝑖 𝑗

𝑔𝑖𝑟(𝑥𝑟)}. (A.21)

Notice that assuming {𝑥 𝑗 ⊥⊥ 𝒑𝒂 𝑖\{ ˆ𝒑𝒂 𝑖 ∪𝓜∗
𝑖 𝑗}} by Equation (A.20) enforces Equation

(A.21) to vanish into irrelevant regressing residuals with respect to 𝑥 𝑗 .

(3) 𝜉𝑖 ⊥⊥ 𝑥 𝑗 , where 𝜉𝑖 is the extensive noise (in the data generation procedure, Equa-
tion (1)) defined by

𝜉𝑖 :=
∑
ℓ∈𝒑𝒂 𝑖

𝑓𝑖𝑘(ℓ𝑘) + 𝜀𝑗 . (A.22)

The independence for the identifiable 𝑥 𝑗 → 𝑥𝑖 has already required by Lemma 1
(SCMs).

Thus, the independence implied by Equation (A.17) eventually reduces to

{𝑍𝑖(𝑥) ∪ 𝜉𝑖} ⊥⊥ 𝑥 𝑗 , 𝐻𝑖(𝑥) := 0 + 𝑍𝑖(𝑥) + 𝜉𝑖 , (A.23)

which represents Corollary 1 (SCMs) and is further satisfied by the sub-conditions
(1)-(3).
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B.1 Python Implementation of the MLC-LiNGAM Algorithm

1 # Author: Xuanzhi CHEN <xuanzhichen.42@gmail.com>
2 # License: MIT License
3
4 from __future__ import annotations
5
6 # hybrid causal discovery framework
7 from .hybrid_framework import HybridFrameworkBase
8
9 # auxiliary modules in causality instruments

10 from cadimulc.utils.causality_instruments import (
11 get_residuals_scm,
12 conduct_ind_test,
13 )
14 # linear regression
15 from sklearn.linear_model import LinearRegression
16
17 # basic
18 from cadimulc.utils.extensive_modules import (
19 check_1dim_array,
20 copy_and_rename
21 )
22 from numpy import ndarray
23
24 import numpy as np
25 import networkx as nx
26 import copy as cp
27 import time
28 import warnings
29 warnings.filterwarnings("ignore")
30
31 class GraphPatternManager(object):
32 # Implementation
33
34 class MLCLiNGAM(HybridFrameworkBase):

65



66 B. Appendix B

35 """
36 *MLC-LiNGAM stands* for a **hybrid** causal discovery method for the **LiNGAM**

approach↩→
37 with **multiple latent confounders**.
38 It serves as an enhancement of **LiNGAM<sup>*</sup>** via combining the advantages

of↩→
39 **constraint-based** and **functional-based** causality methodology.
40
41 !!! note "The LiNGAM causal discovery approach"
42 LiNGAM, the linear non-Gaussian acyclic model, is known as one of the
43 [structural-identifiable

SCMs](https://xuanzhichen.github.io/cadimulc/generation/).↩→
44
45 ***MLC-LiNGAM* was proposed to alleviate the following issues**:
46
47 - how to detect the latent confounders;
48 - how to uncover the causal relations among observed and latent variables.
49
50 <!--
51 References:
52 Chen, Wei, Ruichu Cai, Kun Zhang, and Zhifeng Hao.
53 "Causal discovery in linear non-gaussian acyclic model with multiple latent

confounders. "↩→
54 *IEEE Transactions on Neural Networks and Learning Systems.* 2021.
55
56 Shimizu, Shohei, Patrik O. Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael

Jordan.↩→
57 A linear non-Gaussian acyclic model for causal discovery.
58 *Journal of Machine Learning Research.* 2006.
59 -->
60 """
61
62 def __init__(
63 self,
64 pc_alpha: float = 0.05,
65 _latent_confounder_detection: list[list] = []
66 ):
67 """
68 Parameters:
69 pc_alpha:
70 Significance level of independence tests (p_value), which is required

by↩→
71 the constraint-based methodology incorporated in the initial stage of
72 the hybrid causal discovery framework.
73
74 <!--
75 Attributes:
76 _latent_confounder_detection:
77 The list elements given by `_latent_confounder_detection` are
78 undirected maximal cliques after stage-III learning, suggesting that

the↩→
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79 variables within the undirected maximal clique share an unknown common
cause.↩→

80 -->
81 """
82
83 HybridFrameworkBase.__init__(self, pc_alpha=pc_alpha)
84 self._latent_confounder_detection = _latent_confounder_detection
85
86 # ### AUXILIARY COMPONENT(S)

##########################################################↩→
87 # Function: _stage_1_learning
88 # Function: _stage_2_learning
89 # Function: _stage_3_learning
90
91 def fit(self, dataset: ndarray) -> object:
92 """
93 Fitting data via the *MLC-LiNGAM* causal discovery algorithm:
94
95 - **Stage-I**: Utilize the constraint-based method to learn a **causal

skeleton**.↩→
96 - **Stage-II**: Identify the causal directions by conducting **regression**

and **independence tests**↩→
97 on the adjacent pairs in the causal skeleton.
98 - **Stage-III**: Detect the latent confounders with the help of the **maximal

clique patterns**↩→
99 raised by the latent confounders,

100 and uncover the causal structure with latent variables.
101
102 Parameters:
103 dataset:
104 The observational dataset shown as a matrix or table,
105 with a format of "sample (n) * dimension (d)."
106 (input as Pandas dataframe is also acceptable)
107
108 Returns:
109 self:
110 Update the ``adjacency_matrix`` represented as an estimated causal

graph.↩→
111 The ``adjacency_matrix`` is a (d * d) numpy array with 0/1 elements
112 characterizing the causal direction.
113 """
114
115 # stage-1: causal skeleton reconstruction(PC-stable algorithm)
116 self._stage_1_learning(dataset)
117
118 graph_pattern_manager = GraphPatternManager(init_graph=self._skeleton)
119
120 # stage-2: partial causal orders identification
121 self._stage_2_learning(graph_pattern_manager)
122
123 graph_pattern_manager.store_last_managing_adjacency_matrix()
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124
125 # stage-3: latent confounders' detection
126 self._stage_3_learning(graph_pattern_manager)
127
128 return self
129
130 # ### AUXILIARY COMPONENT(S)

##########################################################↩→
131 # Class: HybridFrameworkBase
132
133 def _stage_1_learning(self, dataset: ndarray) -> object:
134 """
135 **Stage-I**: Causal skeleton construction (based on the PC-stable algorithm).
136
137 Stage-I begins with a complete undirected graph and performs **conditional
138 independence tests** to delete the edges between independent variables pairs,
139 reducing the computational cost of subsequent regressions and independence

tests.↩→
140
141 Parameters:
142 dataset:
143 The observational dataset shown as a matrix or table,
144 with a format of "sample (n) * dimension (d)."
145 (input as Pandas dataframe is also acceptable)
146
147 Returns:
148 self:
149 Update `_skeleton` as the estimated undirected graph corresponding to
150 the causal graph, initialize `_adjacency_matrix` via a copy of

`_skeleton`,↩→
151 and record `_stage1_time` as the stage-1 computational time.
152 """
153
154 self._causal_skeleton_learning(dataset)
155
156 return self
157
158 # ### AUXILIARY COMPONENT(S)

##########################################################↩→
159 # Class: GraphPatternManager
160 # Function: _algorithm_2
161
162 def _stage_2_learning(self, graph_pattern_manager) -> object:
163 """
164 **Stage-II**: Partial causal order identification.
165
166 Based on the causal skeleton by stage-I,
167 stage II in *MLC-LiNGAM* identifies causal directions among the adjacent

variables↩→
168 that are implied by the skeleton.
169 Causal orders relative to all variables can be partially determined by

**regression↩→
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170 and independence tests**, if variables that are relatively exogenous or
endogenous↩→

171 do not be affected by latent confounders.
172
173 Parameters:
174 graph_pattern_manager:
175 An auxiliary module embedded in the MLC-LiNGAM algorithm,
176 managing adjacency matrices amidst the procedure between causal

skeleton↩→
177 learning and causal direction orientation.
178
179 Returns:
180 self:
181 Update `_adjacency_matrix` as the estimated (partial) directed acyclic
182 graph (DAG) corresponding to the causal graph,
183 and `record _stage2_time` as the `stage-2` computational time.
184 """
185
186 start = time.perf_counter()
187
188 # Reconstruction of the causal skeleton entails specific pairs of adjacent

variables,↩→
189 # rather than all pairs of variables.
190 causal_skeleton = self._skeleton
191
192 # MLC-LiNGAM performs regression and independence tests efficiently
193 # based on the adjacency set.
194 adjacent_set = GraphPatternManager.find_adjacent_set(
195 causal_skeleton=causal_skeleton
196 )
197
198 # Apply Algorithm-2 (given by the MLC-LiNGAM algorithm).
199 self._algorithm_2(
200 corresponding_adjacent_set=adjacent_set,
201 corresponding_dataset=cp.copy(self._dataset),
202 corresponding_variables=np.arange(self._dim),
203 graph_pattern_manager=graph_pattern_manager
204 )
205
206 # Record computational time.
207 end = time.perf_counter()
208 self._stage2_time = end - start
209
210 return self
211
212 # ### AUXILIARY COMPONENT(S)

##########################################################↩→
213 # Class: GraphPatternManager
214 # Function: _algorithm_2
215
216 def _stage_3_learning(self, graph_pattern_manager) -> object:



70 B. Appendix B

217 """
218 **Stage-III**: Latent confounders' detection
219
220 Stage-III will learn more causal orders if some variables are not affected
221 by the latent confounders but are in the remaining subset.
222 Meanwhile, the stage-III learning makes use of the causal skeleton information
223 to reduce the testing space of remaining variables from all subsets to typical
224 **maximal cliques**.
225
226 Notice that the maximal cliques, including the undirected relations that cannot
227 be determined, are possibly formed by latent confounders. This in turn provides
228 insight to detect the latent confounders, and uncover the causal relations
229 among observed and latent variables.
230
231 Parameters:
232 graph_pattern_manager:
233 An auxiliary module embedded in the MLC-LiNGAM algorithm,
234 featuring the algorithmic behavior of the maximal-cliques pattern

recognition.↩→
235
236 Returns:
237 self:
238 Update ``_adjacency_matrix`` as the estimated (partial) directed

acyclic↩→
239 graph (DAG) corresponding to the causal graph,
240 ``_latent_confounder_detection`` as the undirected maximal cliques

after↩→
241 stage-III learning, and `record _stage3_time` as the `stage-3`
242 computational time.
243 """
244
245 start = time.perf_counter()
246
247 # Recognize the maximal-clique pattern based on the causal skeleton.
248 maximal_cliques_completely_undetermined = (
249 GraphPatternManager.recognize_maximal_cliques_pattern(
250 causal_skeleton=self._skeleton,
251 adjacency_matrix=self._adjacency_matrix
252 )
253 )
254
255 # Setup of regression, referring to MLC-LiNGAM default settings.
256 regressor = LinearRegression()
257 residuals_dataset = cp.copy(self._dataset)
258
259 # Replace the variables in the clique with their corresponding residuals via
260 # regressing out the effect of their confounded parents that are outside the

clique.↩→
261 for maximal_clique in maximal_cliques_completely_undetermined:
262 # Record: Each of the variable requires a single replacement if necessary.
263 variables_replaced = {}
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264 for variable in maximal_clique:
265 variables_replaced[variable] = set()
266
267 # Get undetermined pairs within a clique.
268 for i in maximal_clique:
269 for j in maximal_clique[maximal_clique.index(i) + 1:]:
270 parents_i = graph_pattern_manager.managing_parents_set[i]
271 parents_j = graph_pattern_manager.managing_parents_set[j]
272
273 # Conduct residuals replacement if the variables share the same

parents.↩→
274 if (parents_i & parents_j) != set():
275 confounded_parents = parents_i & parents_j
276
277 for confounder in confounded_parents:
278 data_confounder = residuals_dataset[:, confounder]
279
280 if confounder not in variables_replaced[i]:
281 variables_replaced[i].add(confounder)
282
283 data_i = residuals_dataset[:, i]
284 residuals_i = get_residuals_scm(
285 explanatory_data=data_confounder,
286 explained_data=data_i,
287 regressor=regressor
288 )
289 residuals_dataset[:, i] = residuals_i.squeeze()
290
291 if confounder not in variables_replaced[j]:
292 variables_replaced[j].add(confounder)
293
294 data_j = residuals_dataset[:, j]
295 residuals_j = get_residuals_scm(
296 explanatory_data=data_confounder,
297 explained_data=data_j,
298 regressor=regressor
299 )
300 residuals_dataset[:, j] = residuals_j.squeeze()
301
302 # Apply Algorithm-2 on the maximal cliques.
303 for maximal_clique in maximal_cliques_completely_undetermined:
304 # Get adjacent set with respect to the variables within maximal cliques.
305 adjacent_set_clique = {}
306 for variable in maximal_clique:
307 adjacent_set_clique[variable] = set(maximal_clique) - {variable}
308
309 # Apply Algorithm-2 (given by the MLC-LiNGAM algorithm).
310 self._algorithm_2(
311 corresponding_adjacent_set=adjacent_set_clique,
312 corresponding_dataset=residuals_dataset,
313 corresponding_variables=np.array(maximal_clique),
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314 graph_pattern_manager=graph_pattern_manager,
315 _specify_adjacency=True,
316 _adjacent_set=adjacent_set_clique
317 )
318
319 # Update latent confounder detection
320 graph_pattern_manager.store_last_managing_adjacency_matrix()
321 self._latent_confounder_detection = (
322 graph_pattern_manager.get_undetermined_cliques(
323 maximal_cliques=maximal_cliques_completely_undetermined
324 )
325 )
326
327 # Record computational time.
328 end = time.perf_counter()
329 self._stage3_time = end - start
330
331 return self
332
333 # ### SUBORDINATE COMPONENT(S)

########################################################↩→
334 # Function: MLCLiNGAM -> _stage_2_learning
335 # Function: MLCLiNGAM -> _stage_3_learning
336
337 def _algorithm_2(
338 self,
339 corresponding_adjacent_set: dict,
340 corresponding_dataset: ndarray,
341 corresponding_variables: ndarray,
342 graph_pattern_manager,
343 _specify_adjacency=False,
344 _adjacent_set=None
345 ) -> object:
346 """
347 Implementation of the module "Algorithm-2" in the MLC-LiNGAM algorithm.
348 """
349
350 # ================================ INITIALIZATION

=================================↩→
351
352 # Initialize the dataset and the relative variable set.
353 adjacent_set = copy_and_rename(corresponding_adjacent_set)
354 _X = copy_and_rename(corresponding_dataset)
355 _x = copy_and_rename(corresponding_variables)
356
357 # Order list for the sequential search of exogenous variables and leaf

variables↩→
358 k_head = []
359 k_tail = []
360
361 # Setup of regression and independence tests, referring to MLC-LiNGAM default

settings.↩→
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362 regressor = LinearRegression()
363 ind_test_method = 'kernel_ci'
364
365 # ========================= IDENTIFY EXOGENOUS VARIABLES

==========================↩→
366
367 # Development notes: In accord with the pseudocode in MLC-LiNGAM:
368 # x_i or i: refer to the exogenous variable
369
370 # Perform up-down search targeting at exogenous variables.
371 repeat = True
372 while repeat:
373
374 # The last remaining variable is endogenous respectively.
375 if len(k_head) == (len(_x) - 1):
376 break
377
378 # Development notes: An addition loop is combined to search the most
379 # exogenous variable (to strengthen the MLC-LiNGAM algorithm).
380
381 # Search for the most exogenous variable based on relative p-values.
382 p_values_x_all = {}
383 for x_i in (set(_x) - set(k_head)):
384
385 # Get adjacent set of the candidate variable.
386 adjacent_set_i = adjacent_set[x_i]
387
388 # Check if the variable x_i is in form of a trivial sub-graph.
389 if len(adjacent_set_i) == 0:
390 k_head.append(x_i)
391 continue
392
393 # Exclude the ones in K-head-list in which
394 # regressing and supplanting other variables with residuals have been

performed.↩→
395 adjacent_set_i = adjacent_set_i - set(k_head)
396
397 # Check if the variables are respectively the most exogenous.
398 if len(adjacent_set_i) == 0:
399 k_head.append(x_i)
400 continue
401
402 # Separately regress on adjacent variables of the candidate variable

x_i↩→
403 # and check if all residuals are independent of it.
404 p_values_x_i = []
405 for x_j in adjacent_set_i:
406 residuals = get_residuals_scm(
407 explanatory_data=_X[:, x_i],
408 explained_data=_X[:, x_j],
409 regressor=regressor
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410 )
411
412 p_value = conduct_ind_test(
413 explanatory_data=_X[:, x_i],
414 residuals=residuals,
415 ind_test_method=ind_test_method
416 )
417
418 p_values_x_i.append(p_value)
419
420 # Check if the candidate variable satisfying exogeneity.
421 if np.min(p_values_x_i) >= self.pc_alpha:
422 p_values_x_all[x_i] = np.min(p_values_x_i)
423
424 # End if none of the candidate variable satisfying exogeneity.
425 if len(p_values_x_all.values()) == 0:
426 repeat = False
427
428 else:
429 # Mark continuous searching.
430 repeat = True
431
432 # Determine the most exogenous variable.
433 p_value_max = cp.copy(self.pc_alpha)
434 x_exogenous = None
435 for x_i, p_value in p_values_x_all.items():
436 if p_value > p_value_max:
437 p_value_max = p_value
438 x_exogenous = x_i
439
440 # Append the exogenous variable sequentially to k-head-list.
441 k_head.append(x_exogenous)
442
443 # Regress and supplant other variables with the residuals
444 # regressed by the exogenous variable.
445 for x_j in (adjacent_set[x_exogenous] - set(k_head)):
446 supplanting_residuals = get_residuals_scm(
447 explanatory_data=_X[:, x_exogenous],
448 explained_data=_X[:, x_j],
449 regressor=regressor
450 )
451
452 # Development notes: Residuals for supplanting are additionally

computed↩→
453 # to save memory.
454 _X[:, x_j] = supplanting_residuals.ravel()
455
456 # ============================ IDENTIFY LEAF VARIABLES

============================↩→
457
458 # Development notes: In accord with the pseudocode in MLC-LiNGAM:
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459 # x_j or j: refer to leaf variable
460
461 # Perform bottom-up search targeting at leaf variables
462 # if the causal order presents more than two variables staying undetermined.
463 if len(k_head) < (len(_x) - 2):
464
465 repeat = True
466 while repeat:
467
468 # The last remaining variable is endogenous respectively.
469 if len(k_head) + len(k_tail) == (len(_x) - 1):
470 break
471
472 # Development notes: An addition loop is combined to search the most
473 # endogenous (leaf) variable (to strengthen the MLC-LiNGAM algorithm).
474
475 # Search for the most endogenous variable based on relative p-values.
476 p_values_x_all = {}
477 for x_j in (set(_x) - (set(k_head) | set(k_tail))):
478
479 # Get adjacent set of the candidate variable.
480 adjacent_set_j = adjacent_set[x_j]
481
482 # Exclude ones in K-head-list in which
483 # regressing and supplanting residuals have been performed.
484 adjacent_set_j = adjacent_set_j - set(k_head)
485
486 # Ignore the ones in K-tail-list that are explained variables

relative to x_j.↩→
487 adjacent_set_j = adjacent_set_j - set(k_tail)
488
489 # Check if the variables are respectively the most exogenous.
490 if len(adjacent_set_j) == 0:
491 # k_tail.insert(0, x_j)
492 k_head.append(x_j)
493 continue
494
495 # Regress the candidate variable x_j on all its adjacent variables
496 # and check if its residuals are all independent of them.
497 residuals = get_residuals_scm(
498 explanatory_data=_X[:, list(adjacent_set_j)],
499 explained_data=_X[:, x_j],
500 regressor=regressor
501 )
502 p_value = conduct_ind_test(
503 explanatory_data=_X[:, list(adjacent_set_j)],
504 residuals=residuals,
505 ind_test_method=ind_test_method
506 )
507 p_values_x_j = copy_and_rename(p_value)
508
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509 # Check if the candidate variable is likely the leaf variable.
510 if p_values_x_j >= self.pc_alpha:
511 p_values_x_all[x_j] = p_values_x_j
512
513 # End if none of the candidate variable is likely the leaf variable.
514 if len(p_values_x_all.values()) == 0:
515 repeat = False
516
517 else:
518 # Mark continuous searching.
519 repeat = True
520
521 # Determine the most endogenous variable.
522 p_value_max = cp.copy(self.pc_alpha)
523 x_leaf = None
524 for x_j, p_value in p_values_x_all.items():
525 if p_value > p_value_max:
526 p_value_max = p_value
527 x_leaf = x_j
528
529 # Insert the leaf variable at the top of k-tail-list.
530 k_tail.insert(0, x_leaf)
531
532 # ======================== IDENTIFY PARTIAL CAUSAL ORDER

==========================↩→
533
534 # Update causal skeleton to partial causal structure according to
535 # K-Head and K-Tail list.
536 graph_pattern_manager.identify_partial_causal_order(
537 k_head=k_head,
538 k_tail=k_tail
539 )
540
541 self._adjacency_matrix = graph_pattern_manager.managing_adjacency_matrix
542 self._parents_set = graph_pattern_manager.managing_parents_set
543
544 return self
545
546 @property
547 def latent_confounder_detection_(self):
548 return self._latent_confounder_detection
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