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Abstract
With the rapid growth of massive time-series data, inferring temporal Bayesian structures based on causation
from data — Temporal Causal Discovery (TCD) — has become an important and challenging task in recent
years. It holds increasing scientific significance and commercial value for computationally uncovering structural
knowledge and/or generative mechanisms behind the data. Although existing reviews have systematically
introduced TCD methods based on observational data, they have not fully considered the issues of
incompleteness caused by hidden variables (latent confounders) or data missing. In this review, we
focus on the latest research progress in the task of TCD with incomplete data, summarizing the philosophy and
paradigms reflected in current research methods. To this end, we elaborate on causality algorithms applicable to
incomplete time-series data within the categories of four theoretical frameworks: Conditional Independence
Tests (CIT), Structural Causal Models (SCM), Score Functions (SF), and Granger Causality (GC). We further
introduce how TCD algorithms address challenges in two real-world applications, namely non-uniform
sampling and non-stationarity. Additionally, we list common case studies and typical evaluation metrics related
to TCD with incomplete data. Finally, in discussing future research direction, we call on that, beyond parallel
advancements upon classic methods and excessive reliance on function fitting, it will be essential for innovative
approaches capable of handling ”the Time Dimension” in a targeted and transparent way — the core
perspective in this review that warrants further exploration in causation. Materials such as brief presentation
slides for this paper are available on the author’s website: xuanzhichen.github.io (Work/Paper/2023).
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1. Introduction

In recent years, high-volume and high-dimensional data have been continuously developing. Time series
data, as an ordered sequence of real values collected over time, often carries real-world information.
Over the past few decades, numerous time series analysis methods based on various tasks such as
classification [37][41], clustering [1][40], and forecasting [69][70] have emerged. Among these, temporal
causal discovery (TCD) based on observational data—identifying causal-and-effect between different
time series without relying on intervention—is also a notable task pertaining to explainable data.

Admittedly, the gold standard for inferring causal relationships between different variables is widely
accepted as Randomized Control Trials (RCTs) [30]. However, due to inherent drawbacks such as high
costs, long durations, and ethical concerns associated with RCTs, a significant number of excellent
causal discovery methods for non-experimental data have been proposed over the past decade [68][24].
The results of these methods are often described in the form of Directed Acyclic Graphs (DAGs), where
directed edges between variables represent the asymmetric relation (causation) rather then correlations.
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Figure 1: A Time-Series-Based System lacking Consideration of Causality (Thought Experiments).

When it comes to the context of time series, in particular considering the autocorrelation among
variables, nevertheless, causal graphs are typically aggregated or expanded along the time axis based on
time windows, which further categorizing them into: Summary Causal Graphs, Window Causal Graphs,
and Full-Time Causal Graphs. Different types of temporal causal graphs serve as the objectives for
TCD in numerous systems of natural sciences or human society, such as climate science [62], efficacy
assessment [8], and economic markets [32], adding complexities as to dynamic systems analysis.

On the other hand, time-series-based systems that lack consideration of causality may mislead people
to draw incorrect or even absurd conclusions. For example (Figure 1), the sales of ice cream
in urban areas during the summer and the rise in local crime rates are clearly two time
series variables that intuitively seem unrelated (non-causal), yet they may exhibit a high
statistical correlation. In fact, merely considering the time series of ice cream sales and crime rates
as observational data is INCOMPLETE. A reasonable explanation is that the unobserved data related to
urban temperatures leads to this biased result; baking heat during urban hot summers simultaneously
stimulate increases in both ice cream sales and potential crime rates. In order words, the factor of urban
temperature acts as a hidden variable (latent confounder), causing a spurious correlation between the
time series of ice cream sales and crime rates in statistical analysis.

So far, several reviews [48][4][25][31] have comprehensively summarized the progress in TCD
based on observational data from uniquely different perspectives, including causal-effect analysis
[48], practical applications of various causality methods [4], data type of event-sequence[31], and the
integration of non-temporal and temporal causal discovery issues [31]. However, topics regarding TCD
based on incomplete data — observational data with hidden variables or missing samples — are still
insufficient. Therefore, we in the paper are meant to investigate the latest research progress in relation
to this kind of topic, as it is shown in Table 1.

Table 1
The Latest Research Progress in the Task of TCD (Temporal Causal Discovery) with Incomplete Data

Causality Algorithms Four Theoretical Frameworks Two Real-World Applications
CIT-Based SCF-Based SF-Based GC-Based Non-Uniform Sampling Non-Stationarity

Classic CD/TCD

PC[61]
FCI[61]

PCMCI[55]
PCMCI-Plus[56]

LiNGAM[58][59]
ANMs[33]

VAR-LiNGAM[36]

GES[12]
Notears[76]

DyNotears[50]

GC[28]
C-GC[22][9][6]
Lasso-GC[60]
Kernel-GC[44]

TE-GC[5][64][65]

NG-EM[27][26]
NG-MF[27][26]

CUTS[11]

GP-Model[34]
BackShift[54]
CD-NOD[35]

TCD with Incomplete Data

LPCMCI[21]
ts-FCI[16]

SVAR-FCI[43]
Tiered Background

Knowledge[2]
DMAGs/DPAGs[20]

SyPI[45]

ANLTSM[13]
VAR with Hidden
Components[19]

TiMINo[52]

SEM[18]
SVAR-GFCI[43]
ANLTSM-FCI[13]

Partial-GC[29]
Eliminating

Confounding GC[3]
PDC-GC[15]
TCDF[49]

V-Granger[47]
Deep recurrent GC[74]



Technically, the challenges of incomplete data for TCD arise from theoretical interference due to
temporal latent confounders and practical issues from irregular data, stemming from sampling frequency
limitations or non-stationarity from environmental shifts. To cope with these challenges, most existing
TCD methods can be theoretically categorized into the following four framework bases: conditional
independence tests, structural causal models, score functions, and Granger Causality, along with specific
strategies in real-world applications. Other notable TCD ideas include discrete logic trees[38][75],
differential equation modeling frameworks [42][23], methods based on Takens’ theorem [66], and
manifold space analysis [63]. Since many of these methods require no unobserved temporal variables
or assume prior domain knowledge, we will focus on the four aforementioned frameworks.

Last but not latest, we note that current mainstream TCDmethods often treat time series as a separate
dimensional augmentation from non-temporal data, which aligns with paralle advancements in non-
temporal algorithms. Yet fundamentally, their ability to discover causal relations based on incomplete
data is the same as that of classical methods. On the other hand, while deep learning techniques such as
neural networks, aligning well with the Granger causality theories, can effectively fit unobserved data,
causal implications found by these neural networks remain controversial. In conclusion, leveraging
temporal information more effectively to improve the performance and interpretability of TCD methods
presents both a promising direction and a potential challenge for future research.

2. The Latest Research Progress of TCD with Incomplete Data

Commencing with the following section, we will formally elaborate upon the research progress in
temporal causal discovery (TCD) in form of technical reports, in which philosophies and paradigms
as to the TCD algorithms with incomplete data will be highlighted between the lines.

*Reminder: Since the discussion with incomplete time series data serves as a relatively small area in fields
of causal discovery, we assume readers holds prior knowledge as to non-temporal (classic) and temporal
causality approaches; readers may jump to Discussion and Conclusion for general ideas of this paper.

2.1. Causal Discovery Algorithms with Latent Variables over Time-Series Data

2.1.1. Methods Based on Conditional Independence Tests

The methodology leveraging conditional independence tests (CIT), known as the constraint-based
approach, extends Bayesian structural learning methods within causal significance constraints. In
the early 1980s, researchers like Glymour and Spirtes developed efficient causal discovery algorithms
that utilize statistical patterns of (conditional) independence and incorporate completeness through
philosophical logic rules.

Given the assumption of Causal Sufficiency [61], fundamental approaches encompass the SGS (Spirtes-
Glymour-Scheines) algorithm and the PC (Peter-Clark) algorithm [61]. Equation (1) represents the CIT
for any extant variable pair 𝑥𝑖, 𝑥𝑗 conditioned upon (every subset consisting of) variables other than
𝑥𝑖, 𝑥𝑗 within the observed variable set 𝑉.

𝐶𝐼 (𝑥𝑖, 𝑥𝑗 | 𝑠𝑢𝑏𝑠𝑒𝑡 ( x𝑉\{𝑥𝑖, 𝑥𝑗})) . (1)

Unlike classic CIT, momentary conditional independence tests (MCI test), shown in Equation (2), are
designed to bolster up the discovery rate of the causal relations (e.g. 𝑥 𝑗 → 𝑥 𝑖) whose statistical variation
is impacted by autocorrelation (e.g. time lag 𝑝 = 1, 2, 3...) in the context of time series. We will back to
this comparation soon as we introduce the PCMCI algorithms[21].

𝑀𝐶𝐼 (𝑥 𝑖𝑡 , 𝑥
𝑗
𝑡−𝑝 | pa𝑖𝑡\ {𝑥

𝑗
𝑡−𝑝} , pa

𝑗
𝑡−𝑝) . (2)



Constraint-based methods rely on the Markov and Faithfulness assumptions, decomposing the
learning process into two stages: skeleton learning and direction orientation based on the V-structure
[51]. Since multiple causal structures can share identical independence patterns, leading to partial
orientation, the goal is to construct Markov equivalent classes (MECs) over partially directed acyclic
graphs (PDAGs), also known as completed partially directed acyclic graphs (CPDAGs). Concretely,
commencing with a complete graph, execution of CIT eliminates redundant edges between pairwise
variables, yielding a causal skeleton. The algorithms then orient the edge direction mainly in light of
the V-structure provided by the condition (separation) set, ultimately leading to CPDAGs.

In terms of systems that involve incomplete data and fail to satisfy the Causal Sufficiency assumption,
the mainstream approach, represented by the FCI (Fast Causal Inference) algorithm[61], is adopted and
proven to be theoretically correct, sound, and complete. The FCI algorithm is an extension of the PC
algorithm, which introduces the concept of maximal ancestral graphs (MAGs) and possible d-separation
sets (Possible-Dsep sets) to aid in respectively representing the causal graphs and testing conditional
independence in the presence of latent confounders. On one hand, similar to the PC algorithm, the
FCI algorithm also employs the V-structure and the logical rule to determine causal direction over
MAGs, leading to the search of partially ancestral graphs (PAGs) that are analogous to PDAGs. On
the other hand, to overcome the potential inefficiency of searching across large combinations of the
Possible-Dsep sets, related work[14] further proposes RFCI (Really Fast Causal Inference) to avoid
traditional extensive search by additionally introducing particular independence tests.

In light of the aforementioned approaches (PC and FCI algorithms), recent advancements in TCD
with incomplete data have emerged as extensions of traditional constraint-based methods, subject to the
same fundamental assumptions (Markov and Faithfulness assumptions). These notable advancements
encompass two primary approaches: (1) The LPCMCI algorithm[21] based on the PC algorithm. (2)
The SVAR-FCI algorithm[43] based on the FCI algorithm.

One may notice that current TCD algorithms often derive a window causal graph by discovering
causal relations within a certain time-delay range. Yet variables that fall outside this delay range,
especially those acting as latent confounders, can propagate their confounding effects through the
autocorrelation of time series variables. This necessitates researchers to introduce higher-order Markov
assumptions to capture more information, leading to the LPCMCI (Latent PCMCI) algorithm that
considers the influence of long-range causal effects through variable parameter settings. The key
idea of LPCMCI lies in its ability to enhance the discovery rate of the causal edges affected by the
autocorrelation through the momentary conditional independence test (MCI test), which we have
illustrated previously in formula (2).

Building on this, LPCMCI[21] further generalizes the application of the MCI test by shrinking
or expanding the size of the conditioning set. The LPCMCI strategy to handle latent variables is
fundamentally based on an information-theoretic perspective, indicating that if ancestral variables
causing long-range causal effects can be incorporated into the CIT as early as possible, the effect size[21]
of the conditioning set (in the present of latent variables) can be significantly improved. Formula (3)
illustrates how to optimize the conditioning set 𝑆 to achieve the best effect size:

𝑆 = arg min
𝑆 ⊆ x∗

𝐼 (𝑥 𝑖𝑡 ; 𝑥
𝑗
𝑡−𝑝 | 𝑆 ∪ 𝑆ℳ𝑑𝑒𝑓) . (3)

where x∗ = x𝑉\{𝑥
𝑖
𝑡 , 𝑥

𝑗
𝑡−𝑝}, 𝑆ℳ𝑑𝑒𝑓 = {pa𝑖𝑡, pa𝑗𝑡−𝑝} \ {𝑥 𝑖𝑡 , 𝑥

𝑗
𝑡−𝑝}. 𝑆ℳ𝑑𝑒𝑓 is updated from 𝑆 and represents the

default conditioning set obtained from the current (estimated) maximal ancestral graph (MAGs).



More specifically, as shown in formula (4), the LPCMCI method shows that if the conditioning set
considers only ancestral variables, it will improve the upper bound of mutual information for a pairwise
variables, avoiding the introduction of spurious associations from latent variables.

min
𝑆

𝐼 (𝑥 𝑖𝑡 ; 𝑥
𝑗
𝑡−𝑝 | 𝑆 ∪ 𝑆ℳ𝑑𝑒𝑓) > min

𝑆′
𝐼 (𝑥 𝑖𝑡 ; 𝑥

𝑗
𝑡−𝑝 | 𝑆′) . (4)

To achieve this, LPCMCI defines middle marks and novel constraint rules to represent potential ancestral
relationships, allowing LPCMCI to identify the corresponding MAGs and discover potential latent
ancestral variables by MCI tests as early as possible in the algorithm’s process of removing redundant
edges. Unlike traditional constraint-based methods with a sequential order, LPCMCI adopts an iterative
updating algorithm framework until the algorithm converges to the optimal PAGs. Meanwhile, because
of the use of this dynamically optimized framework, LPCMCI is thus order-independent, sound, and
complete, as compared to traditional PC algorithms.

On the other hand, as relatively prior constraint-based TCD methods for handling the latent con-
founder, the ts-FCI (Time Series FCI) algorithm[16] was posited as an extension to the FCI algorithm.
The ts-FCI technique[16], predicated on the stationary assumption and parameter fixing, involves
partitions and regulations of time series through sliding windows and time lag. This results in several
partitioned variable sets that facilitate the direct implementation of the FCI algorithm over time series
data, given assumptions of homogeneity and temporal precedence. Namely, based on the maximum time
lag 𝑃, the original time series vector x𝑡 = (𝑥1𝑡 , ..., 𝑥𝑑𝑡 )𝑡0⩽𝑡⩽𝑇

can be transformed into the (more available)
one with a length 𝑃𝑑 and a total sample size 𝑇 − 𝑃. However, due to the absence of instantaneous
causal effect within ts-FCI, SVAR-FCI(Structure Vector Auto Regression FCI)[43] takes into account
the interplay between the propagation interval and the sampling interval during the modeling process,
reducing the impact from contemporaneous latent confounders. Expanding upon the ts-FCI algorithm,
SVAR-FCI enriches the types of temporal latent confounders that can be handled with the realm of
constraint-based methods. It is imperative to acknowledge that the ability of ts-FCI and SVAR-FCI to
unveil latent variables essentially derives from the FCI algorithm.

From the aforementioned SVAR-FCI algorithm and LPCMCI algorithm, it is evident that methods
based on CIT are closely related to the definitions and assumptions of graphical structures. In this
regard, some related work considers how to better integrate background knowledge with graphical
models in time series, and how the graphical models themselves can exhibit stronger performance in
the presence of temporal latent confounders.

According to theMeek criterion, researchers in [2] point out that if background knowledge is available,
similar prior information can be integrated into MAGs-based TCD methods in a manner called tiered
background knowledge, thereby identifying more previously unrecognized causal relationships affected
by (instantaneous) latent confounders. The researchers prove that tiered background knowledge is
sound and complete for the ts-FCI and SVAR-FCI algorithms.

Similarly, because direct representation of causal graphs does not require additional assumptions,
some work also approaches from the perspective of graphical models [20], indicating that methods based
on CIT still have room for improvement in their ability tomodel latent confounders in temporal scenarios
using traditional ancestral graph modeling. Based on subclasses within ancestral graphs, directed
maximal ancestral graphs (DMAGs) and directed partial ancestral graphs (DPAGs) are defined[20],
allowing these types of graphical representations to convey richer and more accurate information in
the presence of temporal latent confounders.



Although methods based on CIT have been expanded and applied in TCD, the existence of the
time dimension has also led to more variable combinations as the search space for conditioning sets,
which may result in higher computational complexity and lower accuracy in CIT. Recognizing the
importance of conditioning variable selection in temporal contexts, related work [45] investigates how
latent confounded temporal causal paths cannot be reflected in summary graphs when aggregated,
thereby defining the concept of sg-unconfounded causal paths. Consequently, this work proposes the
SyPI algorithm, which performs feature selection for conditioning sets based on sg-unconfounded
causal paths, narrowing the search space for testing conditioning sets, and alleviating statistical errors
that often arise in practical applications of hypothesis testing.

Finally, it is evident that algorithms discussed in this section aim to apply CIT under Markov
and faithfulness assumptions to identify causation among multiple variables. By controlling for the
autocorrelation of time series variables and the delay range, methods based on CIT can minimize the
impact of temporal latent confounding effects as much as possible in temporal situations. Simultaneously,
given the rich variety of expressions in graphical models under temporal contexts, these methods have
the potential to more accurately capture and embed information regarding temporal latent confounders.
However, due to the inherent challenges of Markov equivalence classes (MEC), structural uniqueness
is still not guaranteed. The next section will specifically discuss methods based on structural causal
models, where researchers typically resort to for a finely grained expression of causal relations.

2.1.2. Methods Based on Structural Causal Models

The core of methods based on structural causal models (SCM) lies in establishing a functional causal
model (FCM), which interprets a causal system as a series of special equations — each of them explains
the generation of variables as a result of their direct causes and independent noise terms, mapped through
an irreversible causal function. The inherent uniqueness of the variable generation mechanism described
by the FCM is also known as causal asymmetry, meaning that a variable 𝑌 in the system responds only
to changes in 𝑋, and not vice versa. However, in specific real-world scenarios, if researchers wish to
explicitly discover causal relationships only from observational data, and to ensure that the learned
causal structure is unique, then additional assumptions must be added to the FCM. Contrary to intuition,
the noise terms, or disturbance that cause individual differences within SCM, are actually beneficial for
inferring causal directions from observation and maintaining structural uniqueness..

One typical form of causal discovery from observational data based on SCM is the Linear non-
Gaussian Acyclic Model (LiNGAM), which relies on the non-Gaussianity of noise. The basic idea of
the LiNGAM is that the asymmetry inherent in the assumption of independent non-Gaussian noise
mathematically allows for the identification of causal relationships that traditional Linear Gaussian
Bayesian networks cannot achieve, enabling causal discovery under the constraints of DAGs. In the
LiNGAM, the SCM is represented as follows:

x ∶= 𝐵x + n, (5)

where 𝐵 and n represent the lower-triangular causal adjacency matrix (namely the specific form of
the FCM) and the corresponding non-Gaussian independent noise vector of the observed variable
vector x. The mainstream methods for solving the LiNGAM include two categories. The first category
equivalently transforms the LiNGAM into a standard linear Independent Component Analysis (ICA)
model, and uses corresponding statistical techniques to solve this linear system [58]. The second
category directly resorts to least squares estimation or maximum likelihood estimation methods to
search for the most reasonable causal ordering [59].



In addition to non-Gaussianity, another typical form is the Additive Noise Model (ANM) [33], which
constrains the FCM by the third derivative of nonlinear function 𝑓, along with a broader summary[10]:

x ∶= 𝑓 (pax) + n, (6)

where pax and n represent the direct parents of the observed variable vector and the corresponding
Gaussian or non-Gaussian independent noise.

Given the successful application of the LiNGAM based on non-Gaussianity in non-temporal scenarios,
the VAR-LiNGAM [36] serves as a generalization of the LiNGAM for TCD. The VAR-LiNGAM effectively
combines non-Gaussianity with structural vector autoregression (SVAR) models, and proposes a two-
stage algorithm that combines AR model estimation and LiNGAM analysis to estimate both delayed
and instantaneous causation respectively. In the VAR-LiNGAM, the SCM is represented as a linear
non-Gaussian system in the following random process:

x𝑡 ∶=
𝑃
∑
𝑝=1

𝐵𝑝x𝑡−𝑝 + 𝐵0x𝑡 + n𝑡, (7)

where 𝐵𝑝 represents the causal adjacencymatrix at delay 𝑝 and n𝑡 denotes the non-Gaussian independent
noise in the random process. It is important to note that when the delay 𝑝 = 0, 𝐵0 models the
instantaneous causal effects based on DAGs, in the sense that 𝐵0 is also represented as a lower-triangular
causal adjacency matrix similar to that in LiNGAM. Specifically, in the two-stage solution process of
the VAR-LiNGAM, as shown in formula (8), the classical AR model is first used to obtain 𝐵′𝑝 as the

least-squares fit for the delayed adjacency matrix 𝐵𝑝 (for 𝑝 > 0), namely x𝑡 ∶= ∑𝑃
𝑝=1 𝐵′𝑝 x𝑡−𝑝 + n′𝑡 :

x𝑡 ∶=
𝑃
∑
𝑝=0

(𝐼 − 𝐵0)−1𝐵𝑝⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵′𝑝

x𝑡−𝑝 + (𝐼 − 𝐵0)−1n𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n′
𝑡

. (8)

Furthermore, the residuals model ̂n′𝑡 = x𝑡−∑𝑃
𝑝=1 𝐵̂′𝑝 x𝑡−𝑝 are analyzed using standard LiNGAM analysis,

estimating the instantaneous causal effect matrix 𝐵0 (for 𝑝 = 0) for ̂n′𝑡 ∶= 𝐵0 ̂n′𝑡 + n𝑡. Based on the
estimates of instantaneous causal effects (𝐵0), the final estimates for delayed causal effects are obtained
as 𝐵̂𝑝 = (𝐼 − 𝐵̂0)𝐵̂′𝑝(𝑝 > 0).

The LiNGAM has other variants in the context of time series. For instance, in the Multi-dimensional
LiNGAM [57], data in various dimensions is allowed to exist in the form of tensor, and causal information
exposed during the conversion of tensors to matrices is used for structural inference. Furthermore, to
make the VAR-LiNGAM applicable to nonlinear systems in time series data, related work [72] proposed
the TCD method called NCDH, which incorporates techniques of nonlinear ICA.

Building on the models introduced above, the subsequent sections will focus on the performance and
application of TCDmethods when faced with incomplete data. The ANLTSM (Additive Non-Linear Time
Series Model) proposed in related work [13] first establishes an additive noise model with instantaneous
latent confounders based on the VAR model:

𝑥𝑡 = 𝐵𝑡𝑥𝑡 +
𝑃
∑
𝑝=1

𝑓 (x𝑡−𝑝) + 𝐶𝑡u𝑡 + n𝑡. (9)

Here, u𝑡 represents the instantaneous latent confounder, 𝑓 (⋅) is a smooth multivariate nonlinear function,
and u𝑡,n𝑡 are independent Gaussian noise, with distributions n𝑡 ∼ 𝒩 (0, 𝜎21 ), u𝑡 ∼ 𝒩 (0, 𝜎22).



The key idea of the ANLTSM is to efficiently obtain the conditional independence constraint —
information that would originally require numerous conditional independence tests (CIT) — through
obtaining residuals based on additive regression. The ANLTSM demands the stationary assumption
and the Causal Sufficiency assumption, under which the nonparametric estimation of Conditional
Expectations for (observational) nonlinear-and-delay time series is asymptotically consistent [13]. This
is also why ANLTISM needs to constrain latent confounders only in linear and instantaneous types to
ensure the reliability of additive regression. For example, the information obtained from the conditional
independence test 𝐶𝐼 (𝑥 𝑖𝑡 , 𝑥

𝑗
𝑡 | x

𝑉\{𝑖,𝑗}
𝑡 ) can be approximated by testing the conditional expectation

𝔼 [𝑥 𝑖𝑡 | 𝑥
𝑗
𝑡 , x

𝑉\{𝑖,𝑗}
𝑡 , x𝑉𝑡−𝑝]. Furthermore, the independence information involving instantaneous and

delayed relationships obtained through two special additive regressions will be input into the FCI
algorithm, allowing the FCI algorithm to be applicable for the TCD task with latent variables.

Regarding the modeling of temporal latent confounders, related work [19] simultaneously models
the transition matrices of temporal observed variables and latent variables. For example, in formula
(10), the VAR-based model shows that when the submatrix 𝐶 ≠ 0, it indicates that the current system is
influenced by the latent confounder 𝑍 (the submatrix 𝐵 represents the 𝑑 × 𝑑 causal effect matrix):

(x𝑡z𝑡
) = 𝐴 (x𝑡−1z𝑡−1

) + n𝑡, 𝐴 ∶= (𝐵 𝐶
𝐷 𝐸) . (10)

Assuming a random process model with hidden components, this work further introduces the non-
Gaussian independent noise assumption, allowing the probability transition matrix of the statistical
model to have causal identifiability. Specifically, it is necessary to assume that the number of hidden
time series components does not exceed the total number of observable time series in the system. Under
this constraint, by defining an operation known as obtaining the generalized residual 𝑅𝑡, shown in
formula (11) where 𝑈1, 𝑈2 denote 𝑑 ×𝑑 arbitrary matrices, one could manage linear combinations towards
the noise terms, establishing a connection between 𝑅𝑡 and 𝐴.

𝑅𝑡(𝑈1, 𝑈2) = (
𝐼

−𝑈1
−𝑈2

)

𝑇

(
x𝑡
x𝑡−1
x𝑡−2

) . (11)

Algorithms then transform the analysis of random processes with hidden components into a parameter
estimation problem applying the OICA (overcomplete ICA) and the Variational Estimation (VE), to
estimate the parameters of the mixed Gaussian model concerning the noise terms, including 𝐵 and 𝐶,
from observable random processes.

Finally, in terms of model unification and generalization, Peters et al. in related work [52] applied the
independent noise assumption to SCM in time series, collectively referred to as TiMINo (Time Series
Models with Independent Noise). They provided a broader theoretical proof of identifiability for such
FCM, along with practical solution based on regression and independence tests. Formula (12) defines
the TiMINo model:

𝑥 𝑖𝑡 ∶= 𝑓𝑖 (pa𝑖𝑡−𝑝, ...,pa
𝑖
𝑡−1,pa

𝑖
𝑡) + 𝑛𝑖𝑡 , (12)

where pa𝑖𝑡 ⊂ x𝑁\{𝑖}
𝑡 , pa𝑖𝑡−𝑝 ⊆ x𝑁𝑡−𝑝, 𝑝 > 0. From formula (12), it can be seen that, unlike the VAR-

LiNGAM under linear models, TiMINo encompasses the effects of instantaneous and delayed causal
functions within a unified generation process, capable of eliminating them in practice through nonlinear
regression. For temporal latent confounders, TiMINo interprets the edges whose direction cannot be
determined by the algorithm as being influenced by temporal latent confounders.



Compared to the Markov equivalence class (MEC) problem that cannot be resolved by the methods
based on CIT introduced in Chapter 2.1.1, a significant advantage of methods based on SCM is that
they can uniquely identify causal structures by adding additional assumptions. Specifically, in causal
discovery based on incomplete data, methods based on SCM can avoid certain types of temporal latent
variable effects by establishing special types of additive models, making themmore efficient and accurate
in specific scenarios. Meanwhile, under the guarantee of specific causal function identifiability, related
methods can practically employ techniques such as Expectation-Maximization (EM) or Variational
Estimation (VE) to address latent variable issues. However, a general drawback of methods based on
SCM lies in the limitations imposed by function types, making it difficult to cope with more complex
nonlinear function types in reality. Additionally, the assumptions regarding data generation forms
are often violated when sample sizes are insufficient, leading to biases in function-based regression
methods. In the traditional Bayesian network modeling process, score-function-based methods are a
classic approach for structural learning from observational data. The next section will provide a detailed
discussion of this method and its connections with methods based on CIT and SCM.

2.1.3. Methods Based on Score Functions

In time series analysis, different causal networks correspond to different Dynamic Bayesian Networks
(DBN), and methods based on score functions (SF) select the optimal temporal model based on quantifi-
able evaluation scores within the search space. Therefore, as shown in equation (13), the core idea of
methods based on SF for searching the best dynamic Bayesian network 𝒢 ∗ depends on the design and
selection of the SF and the search algorithm.

𝒢 ∗ ∶= argmin
𝒢

𝑆(𝒟 , 𝒢𝒟). (13)

Here, 𝒟 represents the observational dataset, and 𝑆 denotes the SF under this search strategy. SF are
often divided into two main categories: likelihood score functions based on an information-theoretic
perspective, and Bayesian score functions based on prior models fusion. The former mainly includes
Bayesian Dirichlet equivalent (BDe) scores, K2 scores, etc.; the latter mainly includes Bayesian Informa-
tion Criterion (BIC), Akaike Information Criterion (AIC), etc. Regarding search strategies, due to the
need to consider a vast number of graph structure combinations, finding a globally optimal network
through combinatorial optimization is known to be an NP-hard problem.

In light of the inherent flaws in the combinatorial optimization approach of traditional score function-
based methods, recent work [50] has proposed the DyNotears (Dynamic Notears) model, building on
the existing Notears model (Non-combinatorial Optimization via Trace Exponential and Augmented
Lagrangian for Structure learning) [76]. Based on the SVAR model, its identifiability is guaranteed
by two assumptions: the non-Gaussianity of the noise term, or the noise term following a standard
Gaussian distribution with homoscedastic properties [10].

Specifically, from equation (14), the DyNotears model can be interpreted from the perspective of
Structural Equation Models (SEM) regarding the parameter matrices in SVAR or DBN models.

{
x𝑡 = 𝑊𝑡 x𝑡 + ∑𝑃

𝑝=1𝑊𝑡−𝑝x𝑡−𝑝 + n𝑡.
x𝑡 = 𝑊𝑡 x𝑡 + 𝐴𝑝 y𝑝 + n𝑡.

(14)

Here,𝑊 represents the causal matrix of an acyclic graph, and 𝐴𝑝 = [𝑊𝑡−1 | ... | 𝑊𝑡−𝑝] represents a matrix
of size 𝑑 ×𝑝𝑑 at the current lag 𝑝, while y𝑝 = [x𝑡−1 | ... | x𝑡−𝑝]𝑇 represents data of size 𝑝𝑑 ×𝑛 at the current
lag 𝑝. Therefore, for all time slices, based on the least squares loss ℓ(⋅) and the ℓ − 1 regularization norm,
the constrained optimization problem under the DyNotears model can be initially expressed as

min
W, A

𝑓 (W,A) 𝑠.𝑡 .W ∈ 𝐷𝐴𝐺𝑠. (15)



Additionally, by introducing the smooth function, ℎ(W) = 𝑡𝑟(exp(W ∘W)) − 𝑑 (as done in the Notears
model), it can be understood that ℎ(W) = 0 if and only if W is acyclic. Thus, the DyNotears model can
ultimately be represented as the constrained optimization problem shown in equation (16). By smoothly
introducing acyclic constraints, the discrete combinatorial optimization problem is transformed into a
continuous optimization problem, allowing for numerical solutionmethods to be applied for approximate
resolution. Furthermore, by utilizing convolutional neural networks and prior knowledge, the extended
DyNotears method can be adapted for both linear and nonlinear data.

min
W, A

𝑓 (W,A) 𝑠.𝑡 . ℎ(W) = 0. (16)

Overall, methods based on SF, through DyNotears’ algebraic perspective, convert a combinatorial
optimization problem into the smooth one, successfully extending these methods to high-dimensional
time series. This has inspired many subsequent researchers to make further improvements based
on continuous optimization problems. However, it should also be noted that there are controversies
regarding issues, such as data normalization and the convergence of numerical approximation methods
(e.g., augmented Lagrangian)[53].

When assuming the presence of unobserved variables, the classic Structural Expectation-
Maximization (SEM) algorithm in traditional dynamic Bayesian network structure learning is the
standard algorithm for solving probabilistic networks in incomplete observational data [18]. The
Structural Expectation-Maximization algorithm, combined with Bayesian SF based on prior model
fusion, can be used for structural learning of dynamic Bayesian networks. Under the assumptions of
first-order Markov and stationarity, its core idea is to decompose the dynamic Bayesian network into a
prior network and a transition network, followed by iteratively executing optimal parameter estimation
for both networks and model selection for different scoring network structures until convergence.

In addition to the classic latent variable structure learning methods for dynamic Bayesian networks
mentioned above, SF-based methods are also often combined with TCD methods discussed in Sections
2.1.1 and 2.1.2. For example, the Greedy Equivalence Search (GES) algorithm [12] is a mainstreammethod
for finding optimal graph structures based on the Meek conjecture [46] and dynamic programming. It
utilizes the decomposability, score-equivalence, and consistency of score functions to drive heuristic
searches through minimal local modifications of the current graph structure. Furthermore, by defining
specific constraints, the GES[12] algorithm can be applied to the first stage of the ANLTSM (Additive
Non-Linear Time Series Model) [13], where the empirical residuals — containing instantaneous causal
effect information obtained through additive regression — will be incorporated into the SF, thus assisting
in searching for the correct causal graph structure. Additionally, related work has demonstrated that
combining the GES search algorithm with the SVAR-FCI model [43] can also significantly enhance
accuracy under finite sample sizes. This hybrid SF-based approach is referred to as the SVAR-GFCI
method [43], which combines SF methods during the post-pruning process of SVAR-FCI, heuristically
utilizing temporal contextual information and homogeneity assumptions for more efficient edge addition,
deletion, and orientation processes.

In summary, by further considering the causal semantics of dynamic Bayesian network structures,
we note that the constraint-based methods mentioned in Section 2.1.1, which are based on faithfulness
assumptions and conditional independence tests, or the functional class methods based on additive
function assumptions mentioned in Section 2.1.1, tend to qualitatively learn directed acyclic graphs,
while SF-based methods tend to search all possible generative models from the perspective of probability
space, and formulate suitable SF and/or sparsity constraints to quantitatively achieve effective directed
acyclic graphs. Hence, researchers have attempted to combine the advantages of both approaches to
propose more efficient algorithms; the research approach of SF-based methods is often linked to hybrid
TCD algorithm frameworks.



2.1.4. Methods Based on Granger Causality

As another major category widely applied in time series causal inference, Granger causality (G-causality)
is one of the classic concepts in TCD [28], often applied in modeling dynamic systems such as economics,
neuroscience, and meteorological analysis. It is based on the time series forecasting theory proposed
by Wiener, as shown in equation (17), which states that if time series 𝑋 is determined to be a Granger
cause of series 𝑋𝑡−𝑝, then the vector autoregressive (VAR) model constructed by both series 𝑋 and 𝑌
will have a smaller prediction error than the VAR model constructed solely from 𝑋𝑡−𝑝.

x𝑡 =
𝑃
∑
𝑝=1

𝜙(𝑝) x𝑡−𝑝 + n𝑡. (17)

Here, 𝜙(𝑝) represents the coefficient matrix at lag length 𝑝, 𝑃 is the maximum lag length, and n𝑡
represents independent noise.

Currentwork has expanded traditional Granger causality analysismethods from different perspectives,
making them applicable in more general scenarios. On one hand, Geweke et al. proposed a conditional
Granger causality analysis method (Conditional GC) based on covariance matrix representation and
chi-square tests [22][9][6]. In multivariate time series systems, conditional residuals can be calculated
for both the full model and the restricted model, and the results can be compared and measured using
the conditional Granger causality index (CGCI), thereby extending temporal causal inference to high-
dimensional variables. However, high-dimensional time series variables can lead to high computational
complexity and false associations among variables. To alleviate this issue, Shojaie et al. introduced a
G-causality analysis method based on extended Lasso penalty and variable selection techniques [60].

On the other hand, traditional Granger causality analysis is based on vector autoregressive models,
assuming that the causal relationships between variables are linear. However, complex systems in the
real world often exhibit intricate nonlinear relationships. In earlier work, Hiemstra and Jones proposed
a method based on correlation integral estimation to analyze Granger causality under nonlinearity from
a probabilistic measure perspective [32]. Bell et al. approached this from a nonparametric regression
perspective, using nonlinear additive models to model time series variables [7]. Furthermore, consider-
ing that kernel-based methods can map feature vectors of nonlinear input spaces into high-dimensional
linear spaces, Ancona, Marinazzo, and others successively proposed kernel-based RBF-Granger and
Kernel-Granger causality analysis methods [44], effectively discovering nonlinear causal relationships.
Additionally, as another mainstream nonparametric estimation in time series analysis, transfer entropy
(TE) [64][65], based on information-theoretic measures, can measure conditional independence rela-
tionships between time series under certain assumptions, allowing for the integration of conditional
independence tests and conditional Granger causality analysis frameworks. In recent years, with the
widespread application of machine learning methods, especially deep learning technologies, numerous
attempts have emerged to explore nonlinear time series relationships based on Granger causality, such
as using multilayer perceptron methods [67], minimum prediction information regularization [71], and
matrix factorization [73]. Relevant work has been introduced in many reviews.

As mentioned above, numerous model variants based on Granger temporal causality analysis have
emerged, with varying research directions and hotspots. This paper, focusing on causal discovery, will
briefly describe related GC variants from the perspectives of multivariate time series and nonlinearity,
and subsequently introduce the approach of handling latent variables under incomplete data.



Although conditional Granger causality analysis (Conditional G-causality) can handle multivariate
time series systems, its causal discovery capability is still affected by spurious associations, including
external inputs and hidden confounding variables. To control the interference of hidden confounding
variables, Partial Granger causality analysis [29], based on stationary assumptions and autoregressive
models (AR), constructs an F-statistic for the covariance matrix of prediction errors inspired by partial
correlation statistics. For example, considering the time series pair 𝑥 𝑖, 𝑥 𝑗 under a given set of conditional
variables x𝐾, Partial Granger causality analysis establishes the model as follows:

{
𝑥 𝑗𝑡 = ∑𝑃1

𝑝=1 𝜙𝑗𝑗(𝑝) 𝑥 𝑖𝑡−𝑝 +∑𝑃2
𝑝=1 𝑗𝑘(𝑝) x𝐾𝑡−𝑝 + 𝜉 𝑗𝑡 ,

𝑥 𝑖𝑡 = ∑𝑃3
𝑝=1 𝜙𝑖𝑖(𝑝) 𝑥 𝑖𝑡−𝑝 +∑𝑃4

𝑝=1 𝑖𝑘(𝑝) x𝐾𝑡−𝑝 +∑𝑃5
𝑝=1 𝜙𝑖𝑗(𝑝) 𝑥

𝑗
𝑡−𝑝 + 𝜉 𝑖𝑡 .

(18)

where 𝜉𝑡 represents the influence of external factors and hidden variables. Based on the above model,
covariance matrices are modeled, where 𝑆 represents the covariance matrix considering only 𝑥 𝑖, 𝑥 𝑗:

𝑆 = (
𝑣𝑎𝑟 (𝜉 𝑗𝑡 ) 𝑐𝑜𝑣 (𝜉 𝑗𝑡 , 𝜉 𝑖𝑡 )

𝑐𝑜𝑣 (𝜉 𝑖𝑡 , 𝜉
𝑗
𝑡 ) 𝑣𝑎𝑟 (𝜉 𝑖𝑡 )

) = (𝑠𝑗𝑗 𝑠𝑗𝑖
𝑠𝑖𝑗 𝑠𝑖𝑖,

) (19)

and Σ represents the covariance matrix under the given conditional variable set x𝐾:

Σ =
⎛
⎜⎜
⎝

𝑣𝑎𝑟 (𝜉 𝑗𝑡 ) 𝑐𝑜𝑣 (𝜉 𝑗𝑡 , 𝜉 𝑘𝑡 ) 𝑐𝑜𝑣 (𝜉 𝑗𝑡 , 𝜉 𝑖𝑡 )
𝑐𝑜𝑣 (𝜉 𝑘𝑡 , 𝜉

𝑗
𝑡 ) 𝑣𝑎𝑟 (𝜉 𝑘𝑡 ) 𝑐𝑜𝑣 (𝜉 𝑘𝑡 , 𝜉 𝑖𝑡 )

𝑐𝑜𝑣 (𝜉 𝑖𝑡 , 𝜉
𝑗
𝑡 ) 𝑐𝑜𝑣 (𝜉 𝑖𝑡 , 𝜉 𝑘𝑡 ) 𝑣𝑎𝑟 (𝜉 𝑖𝑡 )

⎞
⎟⎟
⎠

= (
Σ𝑗𝑗 Σ𝑗𝑘 Σ𝑗𝑖
Σ𝑘𝑗 Σ𝑘𝑘 Σ𝑘𝑖
Σ𝑖𝑗 Σ𝑖𝑘 Σ𝑖𝑖.

) (20)

Compared to the F-statistic used in conditional Granger causality analysis, 𝐹 (𝑥 𝑗𝑡 → 𝑥 𝑖𝑡) = ln ( 𝑠𝑖𝑖
Σ𝑖𝑖
), the

F-statistic constructed in Partial Granger causality analysis (equation (21)) can better eliminate the
influence of external inputs and hidden confounding variables.

𝐹 (𝑥 𝑗𝑡 → 𝑥 𝑖𝑡) = ln (
𝑠𝑖𝑖 − 𝑠𝑖𝑗𝑠−1𝑗𝑗 𝑠𝑗𝑗
Σ𝑖𝑖 − Σ𝑖𝑗Σ−1𝑗𝑗 Σ𝑗𝑗

) . (21)

On this basis, on one hand, related methods have expanded the application range of Partial Granger
causality analysis to nonlinear incomplete observational data through kernel functions. On the other
hand, a major drawback of Partial Granger causality analysis is that the proposed F-statistic can some-
times yield negative values, raising concerns about its utility in practical applications. Therefore, recent
work [3] has transformed the description of covariance variance relationships in Partial Granger causal-
ity analysis into a direct characterization of conditional Gaussian distributions under the assumption
of asymmetry in time series models, thus ensuring the monotonic growth of the likelihood function
for F-tests, avoiding the inherent negative-value issue of Partial GC. In the frequency domain, other
relevant work [15] considers GC analysis using partial directed coherence (PDC) to locally analyze
network subsets, thereby discovering hidden components in incomplete observational data.

In recent years, the combination of deep learning technology with Granger causality analysis to
identify hidden variables has attracted attention from some scholars. The Temporal Causal Discovery
Framework (TCDF) [49] is a method architecture based on deep networks with an attention mechanism
to learn complex nonlinear temporal causal relationships. TCDF consists of 𝑑 identical but independent
convolutional neural networks (CNNs), each estimating a specific time series and outputting its attention
scores. The core idea of TCDF from the perspective of causality is that, if the current time series has a
higher attention score for other time series, it will contain more causal information.



Furthermore, this framework validates and distinguishes causal and correlational (latent confounding)
relationships through comparisons of network losses under different time series arrangements.

(𝑝𝑗𝑖 = 𝑝𝑖𝑗 = 0) ∧ (𝑝𝑘𝑗 = 𝑝𝑘𝑖). (22)

Under the basic assumption of temporal precedence, as shown in equation (22), TCDF estimates the
time steps 𝑝 (lag causal effects) of time series, allowing it to infer that, time series 𝑥𝑖, 𝑥𝑗 with equal delays
are influenced by an instantaneous hidden confounding variable 𝑥𝑘. However, the main disadvantage of
TCDF is the difficulty in tuning the network’s hyperparameters.

The method proposed by combining deep networks with Granger causality analysis [47] uses gen-
erative networks based on autoencoders to model and recover temporal hidden confounding factors.
This work primarily constructs a generative model between temporal hidden confounding variables
and observed variables, sampling from the posterior probability estimates of the hidden confounding
variables to correct the original Granger causality analysis. Combining the following equations, this
specific method models temporal data using gated recurrent units (GRU) and designs a Temporal Causal
Variational Autoencoder (TC-VAE) architecture to estimate the posterior probability 𝑞𝜃𝑧 of hidden
confounding variables. However, this method requires further refinement to achieve ideal results.

𝐺𝐶 (𝑥 𝑗 → 𝑥 𝑖 | x𝑉\{𝑖,𝑗}, ̂z) , ̂z ∼ 𝑞𝜃𝑧 ( ̂z | 𝑥 𝑗, 𝑥 𝑖,x𝑃⊂𝑉) . (23)

Other relevant work [74] assumes that proxy variables selected from observed variables can effectively
recover the joint probability distribution, including hidden confounding variables, and effectively
encodes the complex generative function using deep network technology, extending nonlinear Granger
causality discovery methods to scenarios with hidden confounding variables. Based on the following
nonlinear autoregressive model (NAR):

x𝑡 = 𝑓 ( x𝑡−𝑝, z𝑡−𝑝) + n𝑡, 𝑝 > 0. (24)

The NAR first encodes the hidden confounding factors through proxy variables using multilayer
perceptrons (MLPs), constructing the full model: 𝑥 𝑖𝑡 = ̂𝑓 (x𝑖𝑡−𝑝, 𝑥

𝑗
𝑡−𝑝, z𝑡−𝑝), and the corresponding

restricted model: 𝑥 𝑖𝑡 = ̂𝑓 (x𝑖𝑡−𝑝, z𝑡−𝑝). Then, it uses nonlinear Granger causality analysis based on
recurrent neural networks to conduct dual-decoder testing on the recovered joint probability distribution.
As shown in equation (25), if the hidden confounding variables obtained through encoding can reduce
the prediction error of the observed time series in Granger causality analysis, one can infer the existence
of hidden confounding variables, and thus deduce their causal direction towards observed variables.

𝑥 𝑗
𝐺𝐶
−−−→ 𝑥 𝑖 ⇔ [𝑥 𝑖𝑡 − 𝑔1 (h

(𝑥 𝑗)
1∶𝑡 , 𝑔2)]

2
< [𝑥 𝑖𝑡 − 𝑔2 (h

(𝑥 𝑖)
1∶𝑡 , h

(z)
1∶𝑡)] . (25)

Where u ⊂ x, z ∼ 𝒩(𝜇 ( h(u)1∶𝑡) , 𝜎2 (h
(u)
1∶𝑡)), h

(⋅)
𝑡 represents the hidden state sequence in the GRU unit

that contains temporal information, and 𝑔 represents a nonlinear function approximated by MLPs.

In summary, methods based on Granger causality analysis have a wide range of practical applications
and a rich variety of model variants in time series analysis and inference. However, they still heavily
rely on the assumption of Causal Sufficiency[61]. In the context of incomplete data, while research tends
to design more unbiased statistics to assist Granger causality analysis and avoid erroneous inferences,
or to leverage the powerful nonlinear fitting capabilities of deep network technologies to model hidden
confounding time series variables, the main issue remains how to better integrate these techniques
with more classical and orthodox causal paradigms.



2.2. Causal Discovery Algorithms on Time-Series Applications with Missing Data

In the aforementioned content, this paper primarily discusses theoretical approaches to temporal causal
relationships in the presence of unobserved variables. For completeness, this section briefly outlines
the issues and challenges in TCD from a practical application perspective, specifically the problems of
sample randomness, or non-uniform sampling, typically caused by physical constraints in real-world
scenarios. Additionally, considering the prevalence of non-stationary time series data in practical
applications, this paper attempts to introduce the relationship between non-stationary effects and the
TCD, from the perspective of incomplete data, or external unobserved variables.

2.2.1. Application One: Time-Series Data with Non-Uniform Sampling

For time series with causal relationships, the true causal frequency is unknown; it must be substituted
with a fixed sampling frequency, supplemented by subsampling techniques. However, the accompany-
ing decrease in data resolution during the subsampling process undermines the original VAR model
assumptions, thereby weakening the practical application of methods such as Granger causality analysis.
Research related to subsampling indicates that, under specific assumptions, the subsampled sequence
(based on 𝑘 time steps) 𝑋̃𝑡 = (𝑥̃1, 𝑥̃1+𝑘, ...𝑥̃1+(𝑇−1)𝑘) retains structural identifiability compared to the
original sequence 𝑋𝑡 = (𝑥1, 𝑥2, ...𝑥𝑇). Specifically, equation (26) reflects the original VAR model and the
subsampled model expanded over 𝑘 time steps. This work demonstrates that the estimation bias for
𝐴𝑘 derived from subsampled data arises from the omission of certain causal relationships of 𝐴 after
aggregation. Consequently, the study proposes finding an appropriate Subsampling Representation
Model (𝐴′, 𝐸′, 𝑘) to approximate the relationships and theoretically analyzes the connections between
𝐴′ and 𝐴 based on assumptions of linear stationarity and non-Gaussian noise.

{
𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝐸𝑡,
𝑋̃𝑡 = 𝐴𝑘𝑋̃𝑡−1 +∑𝑘−1

𝑙=0 𝐴𝑙𝐸1+𝑡𝑘−𝑙.
(26)

In practical applications, this work employs a Gaussian mixture model to model noise aggregation
under the assumption of non-Gaussian noise. Given a suitable subsampling factor 𝑘, it introduces
the Non-Gaussian Expectation-Maximization (NG-EM) algorithm and a more efficient Non-Gaussian
Mean-Field (NG-MF) algorithm based on variational inference.

From a broader perspective, methods for data interpolation have shown more stable performance
in addressing inherent issues of missing data due to sample randomness or non-uniform sampling,
particularly propelled by advancements in graph neural networks (GNNs) and deep learning. Unlike
traditional methods that directly use Gaussian processes for time series imputation, the CUTS (Causal
discovery from irregUlar Time-Series) model proposes an iterative, non-sequential mutually boosting
model. This method iteratively enhances missing data imputation using causal structure information
embedded in specialized GNNs, and employs Granger causality analysis as a sparse constraint criterion
for further causal graph inference. In multivariate time series analysis, related work has proposed a
root cause analysis framework that iteratively combines GNNs and graph structure learning, enabling
causal inference of failure relationships among components even in the presence of missing data.



2.2.2. Application Two: Time-Series Data with Non-Stationary Effects

Non-stationary phenomena in time series, where causal model mechanisms change over time, can be
interpreted as being influenced by unobserved latent confoundings related to timestamps. Consequently,
related work[34] has introduced a more broadly applicable time-dependent causal function model (Time-
dependent FCM) as shown in equation (27).

{
x𝑡 ∶= ∑𝑃

𝑝=1 𝐵𝑝x𝑡−𝑝 + 𝐵0x𝑡 + 𝐺𝑡 + n𝑡,
x𝑡 ∶= 𝑓𝑖 (x𝑁𝑡−𝑝, x𝑁𝑡 , 𝐺𝑡) + n𝑡.

(27)

This model[34] considers both linear and nonlinear non-stationary scenarios, and its estimations can
be transformed into specific Gaussian process regression problems, thus being referred to as Gaussian
Process Models (GP-Model). To capture the uncertainty of incomplete observation systems, the influence
of latent variables on observed variables is modeled by a smooth function 𝐺𝑡. Furthermore, considering
the practical solution process, the study indicates that the algorithm can assign Gaussian process priors
(GP prior) to each time slice, reflecting the causal effect intensity and the influence of latent variables,
as shown in equation (28). This allows the Gaussian process model to progressively capture the level of
causal influence over time.

𝐺𝑡 ∼ 𝐺𝑃(𝜇(𝑡), 𝐾(𝑡, 𝑡)). (28)

It is important to note that the establishment and solution of this model fundamentally rely on the
assumptions of non-Gaussian independent noise or nonlinear functions. Therefore, in practical estima-
tion, it utilizes the two-stage solving algorithm framework of the VAR-LiNGAM model introduced in
section 2.1.2 to estimate the time-delayed and instantaneous causal relationships of the causal function
model that includes timestamps as latent confounding variables.

Non-stationary effects are also accompanied by changes in the sampling environment of time series in
practical applications. The BackShiftmodel[54], proposed in related work, introduces a causal model that
incorporates information about shift interventions in changing environmental domains. It is noteworthy
that this model is constrained under linear cyclic conditions, motivated by the consideration that different
sampling environments may yield different intervention distributions. Specifically, under assumptions
of independence between random interventions and noise terms containing latent variables, the study
defines the Cycle Product regarding the changes in causal matrices across different environments. This
distinction between cyclic and acyclic graphs enables the transformation of the solution of linear cyclic
models into an optimization problem that minimizes the spectral radius of the causal connection matrix.

Through the aforementioned introduction, it is evident that the changes in structural generation
processes in non-stationary systems can be viewed as mechanism changes or distribution shifts induced
by external latent variables or effects. Related work has demonstrated that the information inherent
in non-stationarity aids in causal discovery. The corresponding algorithmic framework CD-NOD
(Constraint-based causal Discovery from heterogeneous/NOnstationary Data)[35] can fully utilize the
information from mechanism changes or distribution shifts during causal skeleton learning, causal
direction determination, and non-stationary representation identification. The main idea is to use
surrogate variables to model potential timestamp changes or domain shifts in non-stationary systems,
and to integrate causal mechanism invariance theory from a broader perspective — to propose a more
general non-parametric causal discovery framework applicable to non-stationary time series with
window segmentation independence.



3. Case Studies and Evaluation

This section introduces case studies for temporal causal discovery (TCD), including time-series datasets
with incomplete circumstance and common evaluation metrics. By applying TCD algorithms to the
corresponding datasets, generalized nonparametric causal discovery estimates the causal graph as the
statistical learning objective.

Thus, this section will also briefly introduce the concepts and significance of commonly used as-
sessment metrics in current causal research, focusing on the comparison and trade-off between the
estimated causal graph and the true causal graphs.

3.1. Dataset

Datasets used in TCD are generally divided into two categories: simulated data and real world data.
Given that the former can be easily influenced by subjective parameter adjustments, we
focuses on introducing real datasets with publicly available causal graphs (ground truth),
briefly summarizing how related work applies these datasets to TCD based on incomplete data.

Real time series datasets with publicly ground truth cover research questions in various fields, includ-
ing policy, economics, and climate science. The corresponding datasets and experimental processing
methods are then listed as follows:

• Average Daily Discharges of Rivers: This dataset concerns the time series data of the flow
of tributaries of the Danube River, collected by the Bavarian Environmental Agency at different
sites established in the watershed. The upstream and downstream relationships determined
by natural geographic locations between the sites can serve as the true causal relationships of
flow impacts between different regions. Related work [21] considers that the latent confounding
relationships in this application context generally have time delays, thus setting different delay
parameters (time window sizes) to test the recall rate of identifiably instantaneous causation.
Meanwhile, related work [74] introduces data of other representative site flow as proxies for
latent confounding variables to validate the effectiveness of TCD methods based on incomplete
data. Additionally, it is important to note that this dataset is affected by extreme weather in
reality, which often violates the stationary assumption, thereby may impact the application of
TCD algorithms [21].

• Political Economy on Capital Taxation Rates: The dataset includes twelve variables of
interest to economists, such as tax rates, per capita GDP, and national policies, over nearly two
decades, which can be used for TCD, especially focusing on the causal impact of other variables on
tax policy adjustments. Although this dataset does not contain ground truth, research work [43]
qualitatively analyzes the temporal causal graphs obtained by the algorithm within appropriate
confidence intervals, pointing out the potential impact of temporal latent confounding factors on
the associations between various economic factors, leading to spurious correlations.

• Stock Markets: This dataset is based on the Fama-French three-factor model concerning factors
influencing stock returns in financial market[17], [39], containing information about financial
investment portfolios over a period of 4000 days. Related work [49] removes some confounding
variables from its underlying domain knowledge network (causal network) to evaluate the
effectiveness of related methods in TCD based on incomplete data.

• Temperature Ozone: Related work [27] explores the binary causal effect identification rela-
tionship between ozone and temperature in this time series dataset. The research conducts
subsampling to reduce data resolution, in an effort to compare the recovery degree of causal
matrix strength by TCD methods on subsampled data under different sampling factors.



• Commodities Price Time Series: The time series vector includes price fluctuation data of
three products: cheese, butter, and milk, from January 1968 to April 2014. Linear causal matrix
estimation is performed on both the total time series data composed of the three products, and
the time series data with one product omitted (composed of the other two products). The analysis
process of this dataset is applied in related work [19], but it is necessary to conduct additional
model checks on the data to ensure that the assumptions of relevant temporal latent variable
causal discovery algorithms are satisfied (e.g., Gaussianity of noise).

• Temperature in House: This time series data records the temperature in different areas near
a house in the suburbs of Germany every hour. Common sense suggests that the external tem-
perature of the house does not affect the internal regions. Therefore, based on prior knowledge,
the temperature recorded in an external area of the house can be viewed as a latent confounding
variable, estimating the causal structure between areas and their changes over time under con-
ditions such as whether someone is living there (causing temperature changes due to electric
heating devices). Specific analyses and applications can be found in related work [52], [34], [27].

• Financial Time Series: Related work [34], [54] analyzes time series containing different stock
indices, considering that temporal data in the financial field exhibits characteristics that change
with the environment. Although different environments act as latent variables, they contain
intervention information. The research can estimate intervention intensity and has made good
predictions on this dataset based on intervention differences.

3.2. Assessment Metrics

Before introducing typical metrics, it is notable to outlines basic evaluation modules by analogiz-
ing classification metrics (in realms of machine learning) to causal structures discovery: True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). Common evaluation
metrics defined around the comparison and trade-off between the estimated causal graph and the true
causal graph (ground truth) will then be listed in the following.

Specifically, TP and FP can be seen as a measure of the causal relationships identified in the estimated
causal graph. TP can be analogized to the total number of variable pairs (causal edges) identified in
the estimated causal graph that are consistent with the causal relationships present in the true causal
graph, quantifying the correctly estimated causal relationships between variables. FP can be analogized
to the total number of incorrectly identified variable pairs in the estimated causal graph that do not
have causal relationships in the true causal graph. TN and FN can be seen as measures of the causal
relationships not identified in the estimated causal graph. TN can be analogized to the total number of
variable pairs in the estimated causal graph that are not identified but are consistent with the absence
of causal relationships in the true causal graph, quantifying the independence relationships correctly
estimated between variables. FN can be analogized to the total number of variable pairs (causal edges)
that are missed in the estimated causal graph but have causal relationships in the true causal graph.

• Precision refers to the proportion of correctly identified causal relationships in the estimated
causal graph among all estimated causal relationships. In other words, the higher the precision
in the estimated causal graph, the more reliable the identification of causal relationships between
variable pairs in the estimated causal graph.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

. (29)

• Recall refers to the proportion of correctly identified causal relationships in the estimated causal
graph among all true causal relationships. Alternatively, the higher the recall in the estimated
causal graph, the more it can encompass the causal relationships over the true structure.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (30)



• 𝐹1 Score is the harmonic mean of precision and recall, integrating the advantages of both and
serving as an overall measure of the effectiveness of causal discovery.

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (31)

• True Positive Rate refers to the proportion of correctly identified causal relationships in the
estimated causal graph among all true causal relationships (aka the recall).

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (32)

• False Positive Rate, also known as specificity, refers to the proportion of incorrectly identified
causal relationships in the estimated causal graph among all true non-existent causal relationships.
A higher false positive rate indicates that the estimated causal graph deviates more from the true
causal graph, and tends to classify causal relationships that do not exist in reality as existent.

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

. (33)

• ROC Curve (Receiver Operating Characteristic Curve) reflects the relationship between the false
positive rate on the horizontal axis and the true positive rate on the vertical axis under a given
classification threshold 𝑘, denoted as (𝐹𝑃𝑅𝑘, 𝑇 𝑃𝑅𝑘). When the true positive rate equals the false
positive rate (𝐹𝑃𝑅 = 0.5, 𝑇𝑃𝑅 = 0.5), it forms a baseline 𝑙 on the coordinate axis representing
random guessing. The degree to which the ROC curve deviates from 𝑙 is characterized by the Area
Under the ROC Curve (AUROC); a larger AUROC value indicates a greater degree of deviation
from the random guessing baseline 𝑙, reflecting that the causal discovery algorithm has good
predictive performance compared to random guessing (under suitable thresholds).

𝐴𝑈𝑅𝑂𝐶 = ∫
𝑘
𝑇𝑃𝑅𝑘 𝑑(𝐹𝑃𝑅𝑘). (34)

• Structural Hamming Distance measures the gap between the estimated causal graph and the
true causal graph from the perspective of the accuracy of estimating causal edges. This metric
quantifies the differences by summing the missing edges (ME), extra edges (EE), and reverse
edges (RE) in the estimated graph compared to the true causal graph.

𝑆𝐻𝐷 = 𝑀𝐸 + 𝐸𝐸 + 𝑅𝐸. (35)

4. Discussion

Under the ideal conditions of basic temporal precedence assumptions and temporal stationarity as-
sumptions, we in this review categorizes various temporal causal discovery (TCD) methods
for handling incomplete data into the three of main paradigms: algorithms based on causal
Markovity and causal faithfulness assumptions, algorithms based on independent noise assumptions, and
algorithms based on Granger predictive theory. Table 2 (in the next page) presents typical TCD methods
based on incomplete data corresponding to these different assumptions.

Given the assumptions of causal Markovity and causal faithfulness, it means that the graphical
structure is compatible with probability decomposition. The paradigm for handling temporal latent
variables is represented by methods based on conditional independence tests (CIT). Based on temporal
precedence, where causal arrows always move in the direction of time, and the conditional indepen-
dence relationships among variables reflected by maximal ancestral graphs (MAGs), pairwise variables
that cannot entail independence by statistical constraints will imply either the existence of causal
relationships, or the influence of latent confounding variables. In the context of time series, since not



Table 2
Paradigms for processing TCD (Temporal Causal Discovery) with incomplete data

Primary Assumptions as to Causal Identifiability Algorithms(Models/Ideas)

Temporal Precedence Assumption
Temporal Stationarity Assumption

Markov Assumption
Faithfulness Assumption

[21],[16],[45],[13],[2],[35]

Independent Noise Assumption
Non-Gaussianity [19], [34], [35], [27]
Non-linearity [13], [52], [34],[35]

Granger Predictive Theory
[29],[3],[49]

Surrogate/Latent Space Adequacy [47], [74]

considering the autocorrelation or long-range causal effects between variables can introduce latent
confounding effects, under the assurance of temporal stationarity, a heuristic search through extended
time series to control the selection of condition sets for conditional independence testing can help avoid
such latent confounding effects.

When the independent noise assumption holds, independence tests and statistical analysis can be
applied to observational data, with the paradigm for handling temporal latent variables represented by
methods based on structural causal models (SCM). When the noise follows non-Gaussian distributions
and the functions causal model (FCM) remain linear, non-Gaussian independent noise can be utilized
to optimize the temporal transfer matrix that introduces latent components. If the causal coefficients
corresponding to the latent components in the matrix are non-zero, the influence and structure of the
latent components can be inferred. When the FCM may possess a nonlinear and additive noise form,
nonlinearity could yield causal identifiability effects similar to those of non-Gaussian noise. The fact
that, latent confounding can disrupt the independent noise assumption, can be tested by examining
whether variables still exhibit dependence after eliminating the influences of temporal autoregression
and other variables, thereby judging the existence of latent confounding variables.

Under the support of Granger predictive theory, the paradigm for handling temporal latent variables
is reflected in different variants of Granger causal analysis methods. In the presence of latent variable
influence, traditional methods aim to avoid potentially erroneous inferences or mitigate incorrect
inferences by statistically correcting the covariance based on conditional Granger predictive theory;
this correction can construct more robust Granger statistics. In recent years, deep learning techniques
under unsupervised learning have provided possibilities for fitting complex functional relationships.
Under the assumptions of latent space adequacy or the sufficiency of latent (confounding) variable
spaces, temporal latent confounding variables can typically be recovered through an autoencoder (AE)
framework, either via surrogate variables or directly through global observational variables. According
to the concepts of Granger predictive theory, whether the recovered latent confounding variables can
reduce the model’s prediction error can be used to judge the existence of latent confounding structures.

Ultimately, it should be noted that another fundamental theoretical method for TCD, based on scoring
functions, often combines and coordinates the aforementioned assumptions within the same framework.
Moreover, considering that TCD based on incomplete data in practical applications often struggles to
meet stationarity assumptions, causes of such issues can be attributed to latent confounding variables
over time slices, leading researchers to assign Gaussian priors about the latent confounding variables to
each time slice. This transforms the problem into one of solving specific Gaussian Process Regression
and independence tests, fundamentally relying on the non-Gaussian noise assumption or nonlinearity
mentioned above. Therefore, the paradigms for handling TCD based on incomplete data in these
scenarios are fundamentally consistent with the aforementioned methods.



5. Conclusion

Based on the current state of the field, two aspects that can be observed and inferred are: (1) Existing
methods for temporal causal discovery (TCD) based on incomplete data tend to explicitly parallel the
promotion of conventional non-temporal methods. However, this promotion often aims to achieve
correspondingly algorithmic variants through the strategies of local combination and optimization. That
is, preemptively resolving the time dimension in TCD problems (i.e., the influence of delay effects), in an
effort to transform the problem into the superposition of multiple non-temporal issues (i.e., partitioning
datasets or implementing multi-step causal discovery strategies). Therefore, how to genuinely utilize
time dimension information based on the characteristics of time series problems, to solve the challenges
of TCD based on incomplete data from a more holistic perspective, is one of the main challenges facing
future research. (2) It is undoubted that widely used TCD methods based on Granger causal analysis
and prediction have rich historical reasons and model variants, especially with the sweeping influence
of deep learning technologies. Temporal variables or predictive functions in Granger causal analysis,
including latent confounding temporal factors, can often be constructed and fitted by complex and
powerful deep networks. However, the controversial argument lies in their interpretation regarding
the actual causal implications (e.g., intervention or structural causal model representation). Therefore,
methods based on Granger causality still need to be explored in future research based on specific
practical application scenarios.

In summary, although the existence of the temporal dimension and different types of temporal latent
confounding variables complicate and challenge the task of causal discovery, this review hopes to
provide a reference perspective on how TCD methods can more reasonably and cleverly leverage (real-
world) temporal information to assist causal inference, making the results of TCD based on incomplete
data more convincing and reliable.
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