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1 Abstract
Causal diagram learning, namely the inference of "structural"
causation from raw data (e.g. drawing an arrow (cause→ effect)
to specify a causal structure), usually serves as a blueprint that
can be applied to mathematically model the real world causality.

Majoring in computer science, I tended to develop algorithms
that are able to learn the causal diagram given the statistical
patterns from data. I was pondering, however, I have spent
much time in coding algorithms and fine tuning experiment re-
sults; whereas I actually know little about the profoundly broad
ideas underneath the philosophy of Causal Discovery. In some
ways, algorithms are productions and implementations of the
idea of causality. From a bigger perspective, it is also pivotal
to understand the reason why pioneers in causation have been
dedicated to inferring the causal diagram from data.

In light of my research experiences, is it possible for me to
write a paper that attempts to provide an initial interpretation of
the pivotal roles of "causal diagram learning" by standing upon
a broad view of causation?

Since I was motivated by fundamental ideas of causality from
a popular science book named "The Book of WHY ", I attempt to
further create connections in the book to other celebrated books
by leaders in causation. Centering around subjects of "causal
diagram learning", three of celebrated books herein include:
Causation, Prediction, and Search [2001] (Peter Spirtes, Clark
Glymour ); Causality [2008] (Judea Pearl); Elements of Causal
Inference [2017] (Jonas Peters, Bernhard Schölkopf, etc). Hence,

Figure 1: Four of the celebrated
"causal books" by leaders in causal
science, providing the relevant ideas
(as to causal diagram learning) that
will be discussed in this paper.

I want to show that ideas of Causal Discovery are deeply rooted
in the past by standing on the shoulders of these giants.

Finally, ideas of causal diagram learning introduced in this
paper is the tip of the iceberg. Furthermore, I hope that points
of view from the work of the giants in causal science might
be beneficial to future progression of AI, cognitive science, and
other related fields.

Videos of the relative presentation can be found online1. NOTES1:
Video link to YouTube Video link to
Bilibili (Chinese)Acknowledgement

The book “Introduction to Causal Inference” by Brady Neal,
with its awesome course, deserves acknowledgement for form-
ing the "spirit" of this paper: popularization of causal science.

REFERENCE2:
The DMIR Lab was established in
Guangdong, China, dedicating to
building the lab into an influential
research center at home and abroad.
The DMIR lab have been focusing on
non-temporal and temporal causal
inference over the last decade.
The lab also has collaborated with
front institutions such as CMU
(Carnegie Mellon University) on
causal discovery study.

—— extracted from lab website

I am grateful for the DMIR lab2 (Data Mining and Informa-
tion Retrieval) that offered me research opportunities in Causal
Discovery, with special thanks to Ruichu Cai of the lab director
and Dongning Liu of the dean in School of Computer, GDUT.

I owe a great debt to my advisor Wei Chen. I would not have
completed this article during my busy graduation season but for
remembering the encouragement from her when I first started
studying causation two years ago —— "Do it, just keep your own
interest and rhythm".
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2 Introduction
2.1 What I Ready to Tell You in This Paper
The content of this paper are mainly divided into two sections: REFERENCE1:

Moral of "revolutionary causation"
is inspired by the possible "second
causal revolution" combining with
the machine learning and AI system
in the next decade. In the book of
Causality, "inferred causation" refers
to the fundamental intuition of cau-
sation analysis (causal discovery).

revolutionary causation and inferred causation1. Partial ideas
from celebrated causal books (Causation, Prediction, and Search;
Causality; Elements of Causal Inference; The Book of WHY ) that
are beneficial to interpret causation in the paper are woven into
the whole sections. In subsections, the content further consists
of the "introductory part" and the "formalization part".

The first section will starts from the top of the "Ladder of
Causation" (a central metaphor of The Book of WHY ). Notions of
counterfactuals and intervention, the paradigm of human causal
thinking, are then introduced into two (simplified) applications
of causal relation analysis in significant issues such as climate
change and COVID-19. I attempt to have my readers’ attention
on fundamental roles that causal diagrams are playing therein.

After nearly a first half of the paper introducing the "down-
stream" capability of a given causal diagram, the second section
will retrospectively focus on how to learn the causal diagram in
the "upstream" task — namely the "Causal Discovery". I am try-
ing to interpret the causal significance of the abstract principle
behind classical causal inference. To approach concrete causal

Figure 2: The outline of interpreting
causation in this paper.

discovery methodology, we ultimately need to get a sense where
specific restrictions are necessary to be understood.

2.2 Frequently Asked Questions
Couples of questions about the "instrumental function" of this
paper are sorted into the FAQ form as the following.

Q: What relevant knowledge is required to understand causation?

A: In this paper, the introductory part mainly serves as a
connection with The Book of WHY. If you have read the book, I NOTES2:

However, basic probability and some
topics of machine learning and statis-
tics maybe used for the formalization
part to elaborate details.

hope there is no other prerequisites2 required for this paper.

Q: How do you choose celebrated causal books based on the topic?

A: The Book of Why and Causality are representative work
of Judea Pearl — the father of causality modeling. Authors and
institutions of two rest books are major contributors in fields
of Causal Discovery. For instance, you might probably heard of
the TETRAD program developed by Carnegie Mellon University.

Q: What is the basic keynote when you write this paper?

A: I aim at popularization of causal science at first. It is more NOTES2:
Though the truth is that when I
wrote the introductory part, I did
virtually complete the "formalization
part" beforehand.

like an informing article if focusing on the "introductory part"3.

Q: Any other additional instructions?

A: Please forgive for my limitation of working proficiency in
English writing (mandarin Chinese as the native language). I
am sorry if some of the mathematical demonstration might be
less rigorous and clear as well. I will try my best to illustrate
the ideas that I deem are worthy in the rest of the paper.

2



3 Revolutionary Causation
3.1 Is Human Influence to Blame for Global Warming?
Debatable statements on the human responsibility for climate
change have been existing for a long time. Why does focusing on
describing a statement in front of major issues such as global
warming become so important?

One way to effectively raise the public awareness may be REFERENCE1:
This motivation is in accord with
what pearl has said in The Book
of WHY that, quote, "Can ordinary
people learn to understand the differ-
ence between necessary and sufficient
causes? This is a nontrivial question.
Even scientists sometimes struggle."

enabling people to genuinely understand the cause-and-effect
relationship behind the significant issues. In that sense, it may
naturally require us to be able to describe the causation in an
obvious and concise way in the first place, making it more
acceptable and easy remembering for publics1.

3.1.1 Application: Counterfactuals

Our brains are naturally the master at describing causation,
and one of the remarkable capabilities to approach this is by
counterfactuals thinking. Let us start our story with back-
grounds lining up with the context2 in The Book of WHY. REFERENCE2:

I herein follow the example in "Coun-
terfactuals", Chapter 8 of the book.Conceptual Causation: Necessity and Sufficiency Causation

A heatwave occurring in France during August in 2003 has
claimed the lives of hundreds of people. Dr. Allen, a meteoro-
logical scientist, used a metric called the "fraction of attributable
risk" (FAR) to quantify how human influence or nature force can
risk to global warming. Hoping to issue a scientific statement
towards the public, Allen wrote the sentence at that point:

Figure 3: The 2003 lethal heatwave
that occurred in France.

"It is ’very likely’ that ’over half’ the FAR of European summer
temperature anomalies is attributable to human influence."

Scientist Allen essentially wanted to make an attribution —
analysis of causes. the terms "very likely" and "over half", how- NOTES3:

On top of that, the term "European
summer" indicates a broader metric
of the average temperature in Eu-
rope over the entire summer, rather
than specifying a singular scenario
in France during August. We will
further consider this "scenario based"
angle in the second half.

ever, might seem a bit contradictory3. Since "over half the FAR
of human influence" is a relatively vague probability (e.g. 60%,
70%, or 80%?), it might contrast with the extreme of that "very
likely the FAR " (e.g. > 95%). What if instead, using the native
accent of causation to describe this attribution probability?

Tricky senses exhibited from that statement are actually the
results from tricky interaction between two of aspects of causa-
tion, namely necessity causation and sufficiency causation.
When it comes to analyze the probability, this notion of causal
relations yields respectively the probability of necessity (PN )
and the probability of sufficiency (PS).

To this end, we can view as simple as an "imagination train-
ing" how PN and PS evaluate the human influence.

Take PN, given the fact that some people had lost their lives
during the global heatwave, let us imagine a counterfactual world

Figure 4: Those people should have
survived if global warming did not
happen. Normally it is unnecessary
to concern about its threats, if not
for the increasingly severe issue of
greenhouse gases emission.

and ask ourselves: how much would we accept the likelihood
that these people should have survived if the lethal heatwave
did not happen? I suppose virtually we all tend to accept that
likelihood — Our experience tells us that the lethal heatwave is
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an extreme event that normally is not necessary to be placed
concerns for its threats. But, the concern has become increas-
ingly common only due to the greenhouse gases produced by
humans. For this reason, we must assign a high value of PN,
specifying a non-negligible responsibility of ourselves.

Manipulating a "counterfactual" imagination of PN based on
our experience, is our unique talent; in terms of PS in the fol-
lowing, I would like to say it arguably involves our instinct.

Again, if we were asked to envision a more general case, for
instance, about how strongly we do believe that global warm-
ing has the devastating power to sufficiently result in death.
Based on our intuition, we would acknowledge the lethal effect
of global warming without thinking twice, which also means to
assign a high value of PS. Just think of how vulnerable the peo-

Figure 5: Global heatwave would
have the devastating power that can
sufficiently result in death, if the
heatwave were occurring now.

ple in poverty are — people who are in lack of shelters and water
will be impossible to resist when climate disaster happens.

Through the above "imagination training", we have seen how
we are capable of drawing on our past experience and common
sense in a rapid way. We have the gift: to articulate the analysis
of causes in an obvious and concise way.

Conceptual Causation: Analysis of Causes Based on Scenarios

Recall Dr. Allens’ formal statement that I mentioned at the
beginning. Actually, the native language of causation can retain
its simplicity but without compromising the accuracy implied
by that statement.

Mathematically speaking, saying "the very likely the FAR of TIPS4:
Under mild assumptions, I will show
how PN becomes calculable, and how
it is equal to the FAR metric in the
formalization part.

human influence" is essentially equal4 to saying "the high PN
of human influence"; Interestingly, claiming "the over half the
FAR" is still having something to do with claiming "the high PS".
Consisting with our "imagination", both PN and PS are substan-
tially in a high value, whereas the relatively vague probability
of "over half " is mislead by the unconspicuous evidence. Which
is to say, such deadly heatwave events in reality is rare (once-
in-a-lifetime event), making it difficult to collect meteorological
data over such a long period of time. The result? Scientists
actually "calculate" a seemingly low value of PS without suffi-
ciently evident data, diluting the effect of global warming and
concluding our inadequate responsibility on heatwave victims.

In other words, it is possible that sufficiency causation can REFERENCE5:
This is a motivation that readers can
connect to the topic "insufficiency
of necessary causation" in the book
Causality, Chapter 10.

turn out to be "insufficiency causation5", as we dig deeper into
a specific scenario such as "once-in-a-lifetime global heatwave".
Let us add more details on the early example and imagine a
more specific scenario. Suppose that both human influence
and nature force, for instance, are causes of global warming.
Assume that the industrial production associating with green-
house gases emission (represented as "human influence") will
impact upon government’s political resistance on dealing with
global warming. Also assume that the dense smoke caused by
the widespread mega fires (represented as "nature force") will
impede emission migration, which then aggravates the climate
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crisis. The controversy point is, though the government tends to
impose restrictions on industrial production for its greenhouse
gases emission issue, emerging techniques such as drones and
satellites manufactured by the industries can also protect our
climate via detecting signals of emission migration by wildfire
— rendering the government to reconsider to relax the restric-
tions (and thus (indirectly) relax the restrictions on greenhouse

Figure 6: The causal diagram for a
specific scenario: human influence,
nature force, and climate change.

gases emission, making the ambiguous human’s responsibility
for climate change).

Namely, neither of the causes can be ignored; yet neither of
them takes sufficient "productivity" of its bad effects. If we must
attribute to a single actual factor, which one should we pick6? NOTES6:

If we pick greenhouse gases emission
by human as an actual cause for cli-
mate change, it seems reasonable to
argue that technologies by human
also prevent climate from pollution
by mega fire; That in turn means, if
we deem air pollution by mega fire is
the actual cause, then we find that
its causal effects can be neutralized
by human technologies as well.

An analogical notion of "sustenance-based causation" will
shed light on how to use environmental information as "the
frame of reference" to define actual causation. In order to
avoid "insufficiency causation" that focuses on the causality of
"production" (able to bring effects), we can imagine another type
of capability of "sustenance" (able to relatively maintain effects).
This capability is described relative to the frame of reference in
which the environmental information play an role, and the idea
yields the sustenance-based causation, which amounts to be a
weak version of sufficiency causation. The weakness refers to
an alternative measurement of causal sufficiency, where we go
from whether the cause can sufficiently "produce" its effects or
not, to whether the cause can sufficiently "sustain" its effects.

For example, the nature force such as widespread mega fire
would sometimes fail to pose threats towards global warming
because human influence are powerful enough to immediately
detect and extinguish the fire. In contrast, almost nothing could

Figure 7: The nature force fails to
"sustain" its causal effect.

prevent the all-time human influence except for ourselves (to
reduce greenhouse gases emission). That asymmetry, where
mega fire is less likewise to continuously "sustain" (maintain) its
causation towards climate devastation than human, suggests
that human influence is exactly the actual cause to blame for
global warming. Despite of the fact that occurrence of mega
fire is time to coincide with industrial production activities (e.g.
making drones and satellites), we can envision an accidental
"freeze" of human industrial production to test whether mega
fire could "sustain" its destructiveness or not. Picturing the

Figure 8: The human influence al-
ways "sustain" its causal effect, mak-
ing it the actual cause in the specific
scenario.

"accidents" always help us understand causation better.

Aside for supplanting sufficiency causation with sustenance
causation, we can add the connotation of necessity causation
as well. We can describe the capability to "sustain necessary
responsibility" as: global warming would not happen but for TIPS7:

In the formalization part, I will try
to show a unity perspective, namely
in form of the causal assertion, to
combine the concepts as for necessity
causation, sufficiency causation, and
sustenance-based causation.

human influence, the same is truth when we have "frozen" mega
fire. At the heart of it, actual causation encompass7 together the
strength of necessity causation and the sufficiency causation,
reaching a more comprehensive analysis of causes.

5



Mathematical Formalization

Reminder : I additionally attach this part alone to discuss the OUTLINE:
- Structured-based Counterfactuals
- Causal Assertion

formalization as I fully convinced one of Judea Pearl ’s points,
quote, "it is the formalization that eliminates the metaphysical
controversy from causation by using elementary mathematics."
Nonetheless, several formulas may be necessary to be included.
I made it a relatively independent part so that readers interested
more in general causal ideas can feel free to skip the following.

Provided the example in the introductory part, let us start
with introducing into the definition of PN relative to the causa-
tion of human influence (X = x)1 on global warming (Y = y):

NOTES1:
We denote X = x and X = x′ as
"with and without human influence",
and Y = y and Y = y′ as "whether
global warming occurs or not".

PN = P (Yx′ = y′ | X = x, Y = y). (1)

Where Yx′ = y′ is a standard "causation language", indicating
"Y = y′ when intervening X = x′ (instead of observing X = x′)".
Following the context of "structured-based counterfactuals2",
we specify Yx′ = y′ further as YMx′ = y′ with a causal model M REFERENCE2:

In Causality, Chapter 7.
"Structured-based" partially refers to
a causal graph GV with vertexes
V associating with a structure M .
We can see structures acting as the
"bridge" to convey "background in-
formation" between a current world
and a "counterfactual world" (will be
explicitly expressed in Equ(4)).

containing other context-related variables V \{X, Y }. We denote
the origin model without intervention as Mx, and another "sub-
model" Mx′ with intervention X = x′, as if we are often "imagine
the another world" when thinking of counterfactual causation.

Here, the term "counterfactuals" implies the further evidences
(X = x, Y = y) counterfactual to our imagination (X = x′, Y = y′)
in PN (Equ(*)). In cases without such evidences, we can con-
nect it with the expression of intervention causation using the
well-known do calculus3 over Mx: REFERENCE3:

Notice that the notion of do calculus
has always been exceptionally high-
lighted in The Book of WHY.
Readers who have gotten a sense
about do(·) calculus might know that
the direct distinction between pure
observation and causation lies in the
action of "doing intervention":

P (y′ | x′) ̸= P (y′ | do(x′)). (2)

P (y′ | do(x′)) = P (YMx = y′) = P (YMdo(X=x′) = y′) = P (Yx′ = y′).
(3)

Probability of intervention is fundamentally a general notion.
This is because intervention expression is the average causality,
actually marginalizing any background information (U ) — the
exogenous (unknown) factors over the cognitive causal model
M . Based on this "background information" notion, counterfac-
tual expression used to represent PN will further consider the
evident background (namely the factual expression) over "spe-
cific scenarios" (U that U ⊂ U ):

PN =
∑

u

P
(
YMx′ (u) = y′) :=

∑
{u|YM

x′ (u)=y′,YMx (u)=y, u∈U}
PMx′ (u) .

(4)
The formalism highlights the attribution or the analysis of

causes based on that specific scenario U = u. The emphasis
on scenario evidence, compared to Equ(*), yields the "generic4" REFERENCE4:

Readers can compare the expression
in Equ(7) with the standard form of
PN and PS in text books:
Probability of Necessity:

P (Yx′ = y′ | x, y). (5)

Probability of Sufficiency:

P (Yx = y | x′, y′). (6)

probability of assertion on behalf of PN :

Assertion : P (YM (u) | e) = p. (7)

Assigning PA = p based on observational scenario evidence e,
we characterize the intensity of our believe to the assertion.

The pivotal point is: which causation relationship that an
assertion is categorized (e.g. necessity causation, sufficiency
causation, actual causation), will essentially depends on how

6



much evident information e we know about the scenario U = u.
For instance, necessary causation entails the assertion YM =
YMX=x′ = y′ in light of evidences e = {X = x, Y = y} that are
observed based on scenario u. This evident information in turn
allow us to update our knowledge about the specific scenario
P (u)→ P (u|x, y). After explicitly specifying two of distinct causal
models (e.g. Mx and the counterfactual one Mx′ ), applying the
definition of conditional probability in Equ(1) will yield: NOTES5:

It might be slightly uncomfortable
when initially encounter with the
counterfactual symbol in joint proba-
bility formula (So am I). This largely
due to the contrast that Yx′ = y′ and
Yx = y are unlikely to be jointly true.
However, we can relate to this by see-
ing the sharing background informa-
tion U = u as an "ordinary event".
In that sense, the joint statement of
Yx′ = y′ and Yx = y just charac-
terizes how possibly the "information
flow" stemming from U = u can be
conveyed (by causal diagrams) and
finally result in "different branches"
Yx′ = y′ and Yx = y.

PN =
∑

u P (YMx′ (u) = y′, XMx
(u) = x, YMx

(u) = y)
P (X = x, Y = y) . (8)

Where the joint statement of Mx and M ′
x becomes an ordinary

event in a standard probability space—the space governed by
associating background information U = u5. By simplifying the
constraint that u ∈ {u | YMx′ (u) = y′, XMx(u) = x, YMx(u) = y},
we ultimately obtain Equ(8) in form of P (u):

PN =
∑

u PM x′(u) PMx
(u)

PMx(x, y) =
∑

u

PMx′ (u) PMx(u|x, y). (9)

The meaning by Equ(9) compared to Equ(1) is significant: the
calculation of PN might be viewed as abducting the causal
model from "central" information (X, Y ) to "background" infor-
mation (U ), then summing up weight of evidence (in form of) REFERENCE6:

The content on the left is following
the standard three-steps of counter-
factual inference (abduction-action-
prediction) proposed in Causality.

PMx(u|x, y) in the "current world" over the necessity causation
assertions (in form of PMx′ (u)) in the "counterfactual world"6.

Now notice that the moral is, the more the scenario evidence
that we can hold on, the closer the actual causation that we
are approaching. In order words, we are more likely to make a NOTES7:

So far, I have highlighted the term
"scenario background" over a causal
model several times (the definition is
explicitly expressed in Equ(4)). Per-
sonally, I think this is the fundamen-
tal philosophy of the causal model
(as well the causal diagram learning).

powerful causal statement if we can include more evident infor-
mation to specify the "scenario background"7.

By breaking down the definition of the probability of necessity
causation, let us briefly take a glimpse on probability of actual
causation. We encompass8 necessity and sufficiency causal re-
lations into a single assertion in Equ(10), along with a specific
model-context named the natural beam Mu (a variant of causal
model M , I will discuss it in the next Section). Roughly speak- NOTES8:

Recall to the sentences that we end
the introductory part with:
"At the heart of it, actual causation
encompass together the strength of
necessity causation and the suffi-
ciency causation, reaching a more
comprehensive analysis of causes."

ing, the natural beam Mu exactly characterizes "the frame of
reference" of (environmental) background information u.

Assertion : P (YMu
x′

= y′, YMu
x

= y | e) = p. (10)

Notice that I simply omit the symbol u from YMu
x′

(u)′ and YMu
x

(u)′,
because Mu is exactly tailored with respect to u.

Next in the second half, I would like to show you how to NOTES9:
Recall to the sentences in the intro-
ductory part:
"Mathematically speaking, saying
’the very likely the FAR of human in-
fluence’ is essentially equal to saying
’the high PN of human influence’."

calculate PN (probability of necessity) following the "clue"9 at
the beginning of the introductory part.

In form of FAR (fraction of attributable risk), it suggests that
if human influence makes no sense to global warming, namely
the two probabilities remain the same that P (y |X = x) : P (y |X =
x′) = 1 : 1, then it will lead to the FAR metric equalling to 0:

FAR = 1− P (y | x′)
P (y | x) . (11)

7



To see why FAR is essentially equal to PN, we need to turn PN
from the counterfactual causation expression, into the ready-
to-use statistic formula. Two of the important assumptions for
the calculation are required: the exogeneity assumption and
monotonicity assumption.

Correction is not causation. It is the unmeasured confounder
that promotes us to establish the assumption to compensate for
the estimation "gaps". X is exogenous relative to Y if the explicit
generation function YX := fY (X) possesses the independence:

M : X ⊥⊥ fY ⇒ X ⊥⊥ {Yx, Yx′}. (12)

This makes sense since the functional mechanism fY where
greenhouse gases will damage the climate is an established fact,
no matter if human produces greenhouse gases or not. Asso-
ciating with another mild assumption named the consistency
(feeding X in P (fY (X = x′)) is consistent with conditioning X in
P (Y | X = x′)), we obtain the crucial conclusion by exogeneity:

P (Yx′ = y′) = P (Yx′ = y′ | X = x′) = P (Y = y′ | X = x′). (13)

Meanwhile, the function fY mapping with four of the poten-
tial outcomes (Fig(9)) is monotonous if the "mapping trajectory"
never changes down to Yx = y′ given the X changing from x′ to
x — It is impossible that massive greenhouse gases produced
by human (X = x) will never damage our climate (Y = y′):

Figure 9: Illustration of the mono-
tonicity assumption (over four of the
potential outcomes).

(Yx′ = y) ∧ (Yx = y′)⇒ False. (14)

We now aim at unraveling the procedure of turning PN to
the purely statistic expression. To begin with, we leverage the
monotonicity assumption to rewrite PN, allowing us to equate
P (Y = y) with P (Yx = y) (monotonicity ensures there never exists
the causation P (Yx = y′) after observing X = x)10: NOTES10:

Notice that we can obtain Equ(15)
by first applying the definition of
conditional probability:

P N =
P (Yx′ = y′, X = x, Y = y)

P (X = x, Y = y)
.

(15)

PN = P (Yx′ = y′, Yx = y, X = x)
P (X = x, Y = y) . (16)

We further attain Equ(16) thanks to the independence in Equ(12)
entailed by the exogeneity assumption:

PN = P (Yx′ = y′, Yx = y, )P (X = x)
P (X = x, Y = y) . (17)

Then we obtain the following (simplified) equation where our NOTES11:
To be more formally, the capabil-
ity of the monotonicity assumption
herein is to tighten a lower bound.
Seeing the jointed distribution as dif-
ferently jointed solutions Yx′ = y′ or
Yx = y for YX(u) governed by a stan-
dard probability space over U , then
in generally we have a sharp lower
bound relating to "random events"
y′

x′ and yx that P (yx, y′
x′ ):

≥ max[0, P (yx)− (1− P (y′
x′ ))]

≥ max[0, P (yx)− P (yx′ )].
(18)

Notice that

P (A, B) ≥ max[0, P (A) + P (B)− 1].
(19)

primary attention boils down to the calculation of jointed dis-
tribution P (y′

x′ , yx) in the numerator.

PN = P (y′
x′ , yx)

P (y | x) . (20)

since the monotonicity assumption guarantees the only conver-
sion from y′

x′ and yx′ to yx (given the X changing from x′ to x).
Therefore, we can obtain P (y′

x′ , yx) directly by subtracting P (yx′)
from P (yx)11.

P (y′
x′ , yx) = P (yx)− P (yx′). (21)

Via using the exogeneity again based on Equ(20) and Equ(13),
we finally prove that PN is mathematically equal to FAR:

PN = P (y | x)− P (y | x′)
P (y | x) = 1− P (y | x′)

P (y | x) = FAR. (22)
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3.1.2 Foundation: Use Diagrams to Unravel Causation Scenarios

Review the specific scenario we described in Fig(6), where the
emission migration issue caused by mega fire could be detected
and tackled by human technologies, making it slightly confus-
ing to distinguish the actual responsibility for climate change.
In the following, I will introduce how to leverage causal diagrams
to define, transform, and solve the problem.

Graphical Causation: Analysis of Causes Based on Scenarios

In terminology, we depict the phenomenon in that singular
circumstance as "the generic causal link (mega fire → climate
change) has been "preempted" by other causes (namely human
influence). Thus, mega fire is a legitimate but not actual cause,
since the impact of a preemption is just about to invalidate its

Figure 10: The causal diagram for a
specific scenario: A causal preemp-
tion occurs.

continuous causal effects to climate change, making the actual
cause determination slightly elusive.

Thus, since the causal mechanism of nature force (e.g. caus-
ing issues of emission migration after the occurrence of mega
fire) is possible to be preempted, it is insufficient to claim that REFERENCE1:

Notice that we have introduced the
sustainable-based causal relations in
the previous section.
Accordingly, causal beam models the
operation behind it: operations to,
quote, "freeze trivial surroundings"
(Causality, Chapter-10).
If we observe that the sustenance
persisting, it hints the (strong) in-
tensity of the actual cause, even in
some singular cases.

the nature force is the actual cause.

Graphical Causation: Causal Beam as a Specific Causal Diagram

Interpreting by causal diagrams, the invalidation essentially
amounts to expunge the arrows stemming from the cause that
is preempted, which brings us to a revelation: In some of the
singular scenarios, we can and should "slim down" a causal
diagram by deleting some trivial arrows.

Notice that this makes sense because some causal relations
genuinely cannot exist when preemption accidentally occurs in
that scenarios. Let us take a bit addition to our vocabulary
to describe this behavior: "slimming a causal graph down to a
causal beam". The causal beam, less rigorously, suggests that
a causal graph is projected to a subgraph relative to a singular
scenario, serving as a "frame of reference" of the surround-

Figure 11: The causal diagram for a
general scenario.

Figure 12: The causal beam for a
specific scenario.

ings1. Therefore, the function of constructing the causal beam
lies in helping us to clearly figure out the singular cause or, may
be exactly the actual cause.

For instance, consider another modification of the climate
change example in which we have not idea about the weather
condition background shown in Fig(11). Let us assume that
the weather condition will influence the factors in the diagram
(political resistance and emission migration) — Extremely bad
weather (e.g. haze, blizzard, etc.) might hinder the political ac-
tivities or natural process. It turns out that2, "slimming down"
the causal diagram in Fig (11) yields the causal beam in Fig (12).
The remaining connections thereof (illustrated as red) partially TIPS2:

In the formalization part, I will show
how to slim down the causal diagram
by tuning the responsive function en-
tailed by the causal diagram.

represent the "strong" relation that would never disappear even
in some singular circumstances. Now this "strong intensity"
of causal relations, from the perspective of the causal diagram
(causal beam), unravels the evidence in which human influence
is the actual cause of climate change.

9



Mathematical Formalization

Reminder : I additionally attach this part alone to discuss the OUTLINE:
- Natural Beam and Causal Beam
- Probability of Actual Causation

formalization as I fully convinced one of Judea Pearl ’s points,
quote, "it is the formalization that eliminates the metaphysical
controversy from causation by using elementary mathematics."
Nonetheless, several formulas may be necessary to be included.
I made it a relatively independent part so that readers interested
more in general causal ideas can feel free to skip the following.

The heart of this section is about the causal beam : slimming NOTES1:
Causal graphs are vague representa-
tion of the structure causal models
(SCMs), in the sense that an arrow
over a graph reflects a relationship of
"listening" over a SCM. That word
"listening" essentially refers to "the
responsive functions f".
Variables that render f nontrivial are
often called the parents (P A).

down a causal graph based on a singular scenario. From the
SCMs1 perspective, this modification equals to shutting down
or downsizing the responsive functions f involved in the original
causal model M , if given a singular background U = u:

f(PA, U) → f (PA∗, U = u)→ fu (PA∗) . (23)
Here PA∗ ⊂ PA indicates weaker "listening" relations in u,

leading to the construction of fu showing the newly functional
response in a modified2 causal model Mu — the causal beam.

Alternatively, suppose PA = S ∪ S′ and PA∗ = PA\S′ = S. NOTES2:
For simplicity, here I omit some de-
tails in building up causal beam.
In fact, how to restrict a modified
model depends on the varying degree
of "freezing". We call it the "natural
beam" if we freeze all the variables.

While freezing some variables in the state of S = S(u), fu is
constructed by eliminating S′ from PA that remain fu trivial:

∃ U = u,∀ S′ = s′, σ (fu(S, S′ = s′)) = 0. (24)
Therefore, actual cause (AC), namely the sustainable-based

causal relations in which analysis of necessary cause (NC) and
sufficient cause (SC) are converged3, can be clearly defined over
the causal beam Mu: NOTES3:

Remember that when discussing the
sufficiency and necessity causal re-
lations in the original causal model
M , we implicitly denote expressions
YMx = y and YMx′ = y′ as Yx = y

(SC) and Yx′ = y′ (NC).

AC(X → Y ) : [YMu
x

= y] ∨ [YMu
x′

= y′]. (25)

Assertions in Equ(*) being true would indicate X is the actual
cause of Y . Consider further with uncertainty P (U = u), the
probability of actual causation (PA) in light of evidence e is
the average summing up against the evidence weight P (u | e): NOTES4:

Notice that the formula in Equ(26)
is the expansion relative to the one
shown in Equ(7) and (10), where we
started discussing the general idea of
causal effect assertion.

PA =
∑

u

P (YMu
x

= y, YMu
x′

= y′) P (u | e). (26)

To see how to apply actual causation analysis , let us back to
the example context in the introductory part. Fig (13) shows the
graphical structure among variables whose responsive func-
tions (represented as AND-OR logic) are exhibited in Equ(27):

M =


z1 := x1 ∧ ¬U

z2 := x2 ∧ (U ∨ x′
1)

y := z1 ∨ z2

. (27)

For the unknown weather (U = u or U = u′), we assume
Figure 13: The causal diagram (vari-
able formalization) in the example.

Figure 14: The causal beam (vari-
able formalization) in the example.

being in blizzard (U = u′) with evidences (e = {X1 = x1, X2 = x2}).
we resort to the causal beam Mu′ yielded in the following:

Mu′
=

{
z1 := x1, z2 := x′

1
y := z1

. (28)

Since less mega fires occurred in blizzard (u′), only link x1 →
z1 → y is distinctive (Mu′

X : Yx1 = y, Yx1′ = y′). We have to grant
that humans are actually to be blamed for the climate change.
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Causal Books References

Reminder : "Partial ideas from celebrated causal books (Causation, Prediction, and
Search; Causality; Elements of Causal Inference; The Book of WHY ) that are beneficial to
interpret causation are woven into the paper."

The Book of WHY

• Chapter-8. Counterfactuals — Mining Worlds That Could Have Been

– Adaptation of the global heatwave example.
– Drawing the notion of necessity and sufficiency causation into the notion of

sustenance-based causation, associating with the actual cause analysis in the
book Causality.

Causality: Models, Reasoning, and Inference

• Chapter-7. The Logic of Structure-Based Counterfactuals

– 7.1 Structural Model Semantics
∗ Probabilistic causal model based on latent background variables.

– 7.5 Structural Versus Probabilistic Causality
∗ Differences between intervention and counterfactuals.
∗ The (partial) reason why the monotonicity assumption is further required.

• Chapter-9. Probability of Causation: Interpretation and Identification

– 9.2 Necessary and Sufficient Causes: Conditions of Identification
∗ Definition: probability of necessity and sufficiency, PNS.
∗ Definition: the exogeneity assumption and monotonicity assumption.
∗ Relations between PN and PNS.
∗ Relations between PN (PS) and excess risk ratio (ERR).
∗ The nonzero bound widths for PNS, implying that probabilities of causation

cannot be defined uniquely in non-Laplacian models (The reason why the
exogeneity and monotonicity assumptions is further required).

– 9.3 Examples and Applications
∗ Counterfactual-based causal assertion for analysis of causes.

• Chapter-10. The Actual Cause

– 10.1 Introduction: the Insufficiency of Necessary Causation
∗ Adaptation of the desert traveler example.
∗ Insufficiency in necessity causation.

– 10.2 Production, Dependence, and Sustenance
∗ Relations between causal assertions and philosophical thinking.

– 10.3 Causal Beams and Sustenance-Based Causation
∗ Definition: natural beam and causal beam.
∗ Definition: sustenance-based causation and actual cause determination.
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3.2 Can Vaccinal Treatments Save Lives of Loved Ones?
In the previous section, I introduced the analysis of causes.
When we find out a cause, we might also wonder the procedure

Figure 15: The second version of the
question "WHY": Why? What is the
mechanism by which vaccine prevent
infection?

of its inherent causal mechanisms1 — causal effect (Fig(15)).
For example, not being vaccinated probably causes infections
by coronavirus. However, what is the mechanism by which the
vaccine prevents infection?

A significant causal mechanism, or causal effect, is normally
understood by intervention. In this section, I will discuss the
connotation of fundamental types of causal effects, which is
woven into my grandfather’s story struggling with COVID-19. REFERENCE1:

Namely, we wish to better un-
derstand the connection between a
known cause and a known effect. In
The Book of WHY, Chapter 9, un-
derstanding the causal mechanism is
described as answering the "second"
version of the "WHY" question (the
first version is the analysis of causes).

3.2.1 Application: Intervention

It appears inevitably to be a sense of immorality or unrealistic
when it comes to talking causality seriously: It is undoubtedly
immoral to impose virus infections upon patients (namely the
intervention); yet it is also impossible to observe the treatment
effect again in reality since man has only one life.

The point is, however, the infeasibility in implementing the
causal intervention does not necessarily mean the infeasibility
in modeling causal effects. Going through the following, I hope
we can get a sense in which theoretically modeling causal effect
is as significant as, if not more, than practically conducting
causal treatments in real world.

Conceptual Causation: Inquire about Causal Effect

Many of people experienced losing love ones during the pan-
demic over the last couple of years. COVID-19 has as well taken
away the life of my dear grandfather.

Accompany with memorial regret lingering within our mind,
there might still be questions left with unclear truth of causal-
effect behind our losing love ones. In fact, moral of the causality
power largely depends on how we are capable of imagination,
bringing us insights into seemly tricky questions. Envision-
ing counterfactual scenarios, we are exceptionally familiar with
such a paradigm to attach causality: what effect it would be if
we can turn back the clock, and start over another treatment?
In terms of my case, could my grandfather have survived from
coronavirus if he received getting vaccines in early time?

If I were placed in the other parallel worlds and encouraged
my grandfather to receive vaccination in time, how much would

Figure 16: Moral of the causality
power — the counterfactual thinking
we discussed in the previous section.
Generally speaking, the gap between
the current world and the parallel
(counterfactual) world is namely the
causal effect, where the difference in
the two different worlds therein lies
in whether my grandfather receiving
the vaccine treatment or not.

the vaccine finally save my grandfather’s life? Essentially, I
herein wish to aware the (total) causal effect of vaccination —
The (total) causal effect should immediately be divided into two
layers: directed causal effect and indirected causal effect.

For example, if I attempt to observe the (vaccine’s) directed
effect by controlling every treatments (into lose their efficacy)
except for getting a vaccine, then I am seeking for the controlled
directed effect (CDE). However, a plethora of control over other
factor(s) could sometimes lead to pitfalls. In Fig(18), what if the
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physiological mechanism is that a dose of vaccine is functioning
by simultaneously proliferating the mediated factor(s) M (such
as enzymes) to function as well? It certainly sounds absurd
for my control to disobey the mechanism by "killing" enzymes
just to malfunction them. Actually, I am more likely wanting a
docilely natural control: curbing the physiological mechanism

Figure 17: If the COVID-treatments
involve taking the certain pill, then
its efficacy should be controlled in or-
der to measure the pure effect of the
vaccine treatment.

by continuously maintaining the enzyme at the level that is be-
fore vaccination. If after merely an injection of vaccine (without
breaking the balance of the other mediated mechanisms), it can
significantly save my grandfather’s life — we will call it relatively
the nature directed effect (NDE) (illustrated in Fig(19-(b))).

Unfortunately, the concrete medical mechanism appear to
be slightly more complicated. Suppose that the abundant en-
zymes are primarily functioning by coordinately producing a
spike level of antibodies to prevent the disease. Namely, merely

Figure 18: The assumptive phys-
iological mechanism of vaccination.
The vaccine treatment might result
in an assistive "enzyme treatment".

Figure 19: (a) An unnatural con-
trol by malfunctioning the enzyme;
(b) naturally maintain the enzyme’s
amount that in the level before re-
ceive the vaccine (compare the "num-
ber" of enzyme with Fig(18)).

an injection of vaccine with the normal level of the enzyme
amount is actually not able to generate enough antibodies, and
furious symptoms would still be rampant without enough anti-
bodies. That means, the (natural) directed effect can be some-
times insignificant, whereas this brings us to focus more on the
the crucial indirected effect.

Suppose that now I only consider the indirected effect (of
the enzyme). Once the indirected mediated mechanism makes
sense, I can imagine resorting to an elixir that can stimulate
my grandfather’s body to produce the enzymes in an amount
as much as a vaccination level. In that sense, a strong outcome
of the "nature indirected effect (NIE)" will imply my grandfather’s
miraculous recovery from COVID-19, even without injecting a
vaccine beforehand(illustrated in Fig(20)).

Feeling frustrated again, it might turn out that the NIE stays
insignificant similarly, if antibodies produced by the enzyme it-
self are still not enough to protect my grandfather from diseases.

Nonetheless, should we just deem that getting vaccines is
never work at all? Not quiet. The tricky point is, again, the
amount of antibodies that are promoted to release only by the
vaccine or the enzyme will fail to reach the intensity thresh-
old to help my grandfather dodge COVID-19 (though vaccine or
enzyme does play the physiological role in their chemical reac-
tions). It makes the question boiling down to a common setting
in reality: non-linearity — causal effects of vaccines and causal

Figure 20: The intuition of the
NIE. Notice that neither in the cur-
rent world nor the parallel world my
grandfather were supposed to receive
the directed vaccination. In order to
evaluate indirected enzyme efficacy, I
presume there were an elixir to sim-
ulate the amount of enzymes to a
vaccine-level in the parallel world.
Finally, we can calculate the NIE
by calculate the disparity in the two
different worlds — the disparity of
the probabilities where the COVID
symptoms are still rampant.

effects of enzymes are fundamentally indispensable.

That is, "a unit of" intervening treatment (e.g. from not get-
ting vaccines to getting vaccines) does not linearly or propor-
tionally associated with "a unit of" recovery (e.g. from death
to survival), unless a certain medically intensity threshold has
been meet.

So what happens? Due to the non-linearity (e.g. common
restrictions such as the medication threshold of the effective
antibodies level), we recognize the seemly intuitive "principle of
additivity" — "the total causal effect of the vaccine equals to the
directed effect of the vaccine itself, and ’plus’ the indirected effect
of the vaccine via triggering beneficial enzymes" — just cannot
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work. How could we learn a tangible causal-effect given either
the directed effect or the indirected effect is both insignificant?
However, with the way of thinking flipping around, namely the
counterfactual thinking, surprisingly we can redescribe it from
another perspective — "the principle of subtraction":

"the total causal effect of the vaccine as well equals to the
directed effect of the vaccine itself, and ’minus’ the potentially
indirected losses of the vaccine — the losses that without the
potential enzymes’ assistance triggered by vaccines."

Merits of this thinking perspective bring us to conjure up the
other picture (Fig(21)), where the losses that are without the in-
directed effect of enzyme treatment can be characterized by an
"inverse" nature indirected effect (NIE) (Fig(21-b)). The meaning
entailed by this "inverse" version of the causal effect is that, in
stead of transferring from the previous treatment (time=t0) to
the hindsight treatment (time=T ), namely from without enough
amount of enzymes to the abundant enzymes, the perspective
of counterfactual thinking instructs us to (hypothetically and
straightforwardly) start with the hindsight treatment (time=T )
in which the the abundance of enzymes are exactly proliferated
by vaccination. Then, we turn back the clock, and start over

Figure 21: The inverse version of
the nature indirected effect (NIE)
that fits to the non-linearity context,
which is a special type of the in-
tervention in light of counterfactuals
thinking.

another "treatment" — namely without the vaccine treatment
(and without the enough amount of enzymes).

Notice that this counterfactual thinking (suppose receiving
the vaccination beforehand) brings the effect asymmetry shown
in Fig(21-b): Only when the vaccine efficacy is involved, could
we observe the significant non-linearity change of the levels of
enzymes (e.g. under the threshold and above the threshold).
This significant change amounts to the significant disparity be-
tween two of the different setting (in two of the different worlds),
further contributing to an significant result of the "inverse" NIE
— The inverse NIE equals to -1 whereas the original NIE equals
to 0. Incorporating this result into the "principle of subtrac-
tion", we will discover the total causal effect actually equals to
1 — receiving the vaccine could have worked!

REFERENCE2:
A piece of anecdote from Judea
Pearl, quote,
“I was extremely thrilled to see this
subtraction principle emerging from
the analysis of Total Causal Effect
(TCE), despite the nonlinearity of
the equations.” .

Finally, to close the end of the story where my grandfather
had struggled with COVID-19, I want to discuss more a bit
about our thinking way of causality in treatment effects. Not
feeling slightly weird the next time when hearing of "total causal
effect = directed effect− indirected effect", instead of "total causal
effect = directed effect + indirected effect". We know that the
"subtraction"2 essentially indicates to evaluate treatments by
the counterfactual thinking. The strength of it gives rise to a
general "subtraction principle" — an "envisioning-parallel-world"
way of thinking to understand causality in intervention.

May my dear grandfather rest in peace in his heaven world.
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Mathematical Formalization

Reminder : I additionally attach this part alone to discuss the OUTLINE:
- Average Treatment Effects
- Controlled Directed Effect
- Natural Directed Effect
- Natural Indirected Effect

formalization as I fully convinced one of Judea Pearl ’s points,
quote, "it is the formalization that eliminates the metaphysical
controversy from causation by using elementary mathematics."
Nonetheless, several formulas may be necessary to be included.
I made it a relatively independent part so that readers interested
more in general causal ideas can feel free to skip the following.

In fields of biological and medical studies, researches can
refer to average treatment effects (ATE), the (positive) efficacy
(Y = y) of the associated treatment(X), by measuring the aver-
age disparity between participants in different assigned groups
(e.g. X = x or X = x′):

ATE = P (y | X = x)− P (y | X = x′). (29)

There is a primary hurdle, however, preventing our estimation
from the "true causal efficacy" in practical implementations. NOTES1:

In causation, recall that the interven-
tion expression is often formally de-
noted as do(x) (e.g. doing a treat-
ment instead of seeing a treatment).

Reasons behind often involve the confounding that normally
comes from "unknown" factors during treatment experiments:

|P (Y = y | do(x))− P (Y = y | x)| > 0. (30)

The inequality P (Y = y | do(x)) ̸= P (Y = y | x) described by
intervention (do calculus)1 suggests that, in practice, additional
"known" factors z might be helpful to shrink or even eliminate
the gap via mathematical transformation Φ:

Φz : P (Y = y | do(x))︸ ︷︷ ︸
theoretical

7→ (P (Y = y | x, Z = z)︸ ︷︷ ︸
practical

. (31)

Equ(31) shows the whole picture. But since we mainly focus on NOTES2:
But please keep in mind the endeavor
where we always need to maneu-
ver around Φz from the theoretical
"causal estimation" into the practical
" statistical estimation".

modeling theoretical causal effects, I will use P (Y = y | do(x))
as the building-block symbol for the following demonstration2.

Assuming binary variables, we start with the well-known
ACE (average causal effect ), the general causal-effect estima-
tion that measures the average change corresponding with the
different intervening treatment effects P (y | do(X)):

ACE := P (y | do(X = x))− P (y | do(X = x′)). (32)

In the pandemic example, rampant symptoms by disastrous NOTES3:
To put it into our context, let us in-
troduce the concept about "time" to
enhance our understanding as to the
causal effect.

COVID amounts to putting a low probability of escaping from
infection (Y = y) without the previous (time=t0)3 vaccine protec-
tion (Xt0 = x′). In a hindsight situation (time=T ), we presume
participants were vaccinated (XT = x). We then ask could they
stay survival (assigning a high probability Y = y) by assessing
the causal effects X → Y after the intervening XT = x versus
the previously Xt0 = x′:

ACEt0 : T
X→Y := P (y | do(XT ))− P (y | do(Xt0)). (33)

In the basic formula of ACE, we then immediately introduce
the mediating mechanism W (e.g. enzymes spured by vaccines)
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and fully control it, obtaining a relatively "sensitive" estimation
named CDE (control directed effect ):

CDEt0 : T
X→Y := P (y | do(XT ), do(w))− P (y | do(Xt0), do(w)). (34)

Slightly different from ACE, measuring the sensitivity implies NOTES4:
Notice that again, the symbol do(w)
indicates to confine W into constants
by physical intervention do(W = w),
not by conditioning see(W = w).

that the CDE of X → Y is obtained when all other causal path
(e.g. X → W → Y ) are cut off by do(w)4. However, it might
sometimes be a absurd compulsion because CDE hints us to
select which mechanism (e.g. W =?) to be "controlled". We may
not be willing to make such a choice since a wrong control over
mechanism can probably result in a more problematic issue. NOTES5:

Recall the content in the introduc-
tory part that "It certainly sounds
absurd for my control to disobey the
mechanism by ’killing’ enzymes just
to malfunction them. "
"Actually, I am more likely wanting
a docilely natural control."

So to speak, there is reasonable to obtain a more natural
estimation: measuring the anticipated change of Y under the
"pure shifting5" from do(Xt0) into do(XT ), which will retain the
"previous preference6" of the mediate mechanism W related to
Xt0 . With merely a directed change of the vaccine treatment X,
we further define the nature directed effect (NDE) as: NOTES6:

"Retaining the previous preference"
is explicitly represented as wt0 =
W (Xt0 ) = w(x′), with the "previ-
ous" value Xt0 = x′ before shifting.

NDEt0 : T
X→Y := P (ywt0

| do(XT ))− P (ywt0
| do(Xt0)). (35)

The probability P (ywt0
) that we interested in reflects the likeli-

hood to dodge COVID (Y = y) in a hypothetical situation where
all other variables W remains the previous value W = W (Xt0)
(except for X, because we were exactly curious about what things
would be after a switch up to XT against Xt0 ).

NOTES7:
To supplement to this, NDE can be
intuitively reduced to the weighted
average of CDE under certain "no
confounding" assumptions (discussed
in literature):∑

w

(
CDEt0 : T

X→Y (w)
)
·P (w | do(Xt0 ))

(36)

Notice that we choose to use the notion of structure-based
counterfactuals (e.g. P (YMdo(w) = y′ | Xt0), recall M denoted
as the causal model) since intervention (e.g. P (Y = y′ | do(w))
is a general notion for controlling over (every) scenarios do(w);
whereas we prefer to the specific scenario (do(w) = do(w(x′)))7.
We emphasized this in the formalization part in Section 3.1.1.

Once again, leveraging the expressive counterfactual notion,
it seems that we are able to analogically define the NIE (nature
indirected effect ) exhibited in Equ(37) compared to Equ(35):

NIEt0 : T
X→Y := P (yxt0

| do(WT ))− P (yxt0
| do(Wt0)). (37)

Naturally we want to measuring the anticipated change of Y
under the "pure shifting" from do(Wt0) into do(WT ) by retaining
the "previous state" of treatment X = Xt0 . However,notice the
fact that W is actually depended on X that do(WT ) = W (do(X =
XT )). This would contrast with the intervention involved in the
counterfactual expression that yxt0

= ydo(X=Xt0 ). To fix this this REFERENCE8:
Equ(38) is the standard mathemat-
ical form of the NIE highlighted in
The Book of WHY; and we have seen
its intuition in the introductory part
(presume an elixir that can stimulate
the enzymes from the normal level
wt0 to the vaccination level wT ).
Personally, Equ(38) might be the
most representative one to mathe-
matically interpret how to deal with
causal intervention about intermedi-
ate mechanism.

mild fault, we can rewrite Equ(37) as8:

NIEt0 : T
X→Y := P (ywT

| do(Xt0))− P (ywt0
| do(Xt0)). (38)

As mentioning at the end of the introductory part, we can
obtain the total causal effect (TCE) via a more general "principle
of subtraction" to combining together NDE and NIE:

TCEt0 : T
X→Y :=

(
NDEt0 : T

X→Y

)
−

(
NIET : t0

X→Y

)
. (39)

I need to highlight the term NIEt0 : T
X→Y (instead of NIET : t0

X→Y ) that
exactly specifies "the losses that are without account for the
indirected effect". I would like to say that silently swapping the
"time point" essentially implies our counterfactual thinking.
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3.2.2 Foundation: Use Diagrams to Deduce Causal Inquiry

Review the versatile causal-effect inquiry we introduced in the
previous section, in the following, let us briefly redescribe them
but from the perspective of causal diagrams — how to execute
different "operations" on the causal diagram in light of differ-
ent requirements for inquiry? Notice that this is significant, as
the permission for answering the causal inquiry through graph
operations will imply the feasibility for answering the causal in-
quiry through statistical estimation in the real world.

Graphical Causation: Causal Inquire and Graph Surgery

Formalism of inquiries boils down to asking directed causal
Figure 22: The "graphical surgery"
relative to the directed causal effect.
Compared to the previous situation
where vaccination was not received,
"tweak" the node (vaccine) on com-
pulsion is meant to intervene a vacci-
nation treatment and to observe the
change brought by the flow (red) of
causal information (namely arrows
in the causal diagram). Therefore,
it seems unnatural that the flow of
of causal information is stuck at the
controlled node (enzyme). Instead,
we tend to just hold constant the
information (blue) of the node (en-
zyme) to be the level that is before
tweaking the node (vaccine).

effects and indirected causal effectss. For each category, there
might be a "controlled" version and a "nature" version. We can
execute different types of "surgery" for the causal diagram to

Figure 23: The "graphical surgery"
relative to the indirected causal ef-
fect. Notice that we implicitly skip
the notion like "controlled indirected
effect". This is on purpose since such
a notion does not exist. Roughly
speaking, vaccine (directed effect) is
exactly the main cause of enzymes
(indirected effect), leading to the fact
that the total causal effect will not
exist if the directed effect were shut
down (controlled) beforehand.

gain some intuition of these inquires. Literally, two "scalpels"
relative to the graph’s nodes are called (in Judea Pearl’s words)
"to hold it on constant" and "to tweak it on compulsion".

Take Figure (22), I herein bring another unknown common
factor into consideration for the illustration of "graphical surgery".
"Tweaking the node" in a causal diagram refers to enforce an
intervention, thus the other arrows pointing to the node wait-
ing to be tweaked are deleted from causal diagrams — the only
remained arrow is our operation of "tweaking it". Meanwhile,
"hold constant the node" is similar to "control", but implicitly
involves the "counterfactual" information. This is because the
most natural way to keep the (other) factors unchanged (while
tweaking the main node) is just to render them to be counter-
factual to the situation that after intervention.

Importantly, notice that the graphical surgery results in a
causal subgraph, which is the "generic format" as to how the
causal diagram can answer causal inquiries. Difference "shapes"
of the causal subgraph imply the versatile scenarios — the dif-
ferent intervention based on the different causal inquiries.

Graphical Causation: Causal Inference Ensured by Graph Tests

Graph operations, as a friendly language of causation, are
extremely good at "simulating" experiments. Strongly reliable
causal formula would still be deduced (not matter how poor the
data we have) to answer our inquiries without costly real-world
experiments, only if we pass specific "graph tests" with flying
colors. The graph test1 here refers to the specific criteria with
which the causal subgraph need to satisfied — for example,
you probably have heard about the back-door criterion. TIPS1:

In the formalization part, I will show
you one of the generalized graph cri-
terion — serving as an advanced ver-
sion of the back-door criterion —
that relates to the problem-solving
tool from an example in The Book
of Why, where Pearl left us with a
vague meditation about that muse
whisper "Try the do-calculus".

Pivotal roles played by causal subgraph lie in driving as an
"inference engine" to deduce the reliable causal formula. Conversely,
the prerequisite of such deductive reliability exactly relies on satis-
fying a "graph test". Imagine an intellectual machine, which is em-
bedded with the concise representation of a huge causal graph, can
compute deductions automatically and answer our causal inquiries
swiftly. It would be more appealing and exhilarating, would it?
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Mathematical Formalization

Reminder : I additionally attach this part alone to discuss the OUTLINE:
- Dynamic Plans
- Sequential Back-Door Criterion
- Do Operation

formalization as I fully convinced one of Judea Pearl ’s points,
quote, "it is the formalization that eliminates the metaphysical
controversy from causation by using elementary mathematics."
Nonetheless, several formulas may be necessary to be included. NOTES1:

average causal effect (ACE),
control directed effect (CDE),
nature directed effect (NDE),
nature indirected effect (NIE),
total (causal) effect (TCE),
to name a few.

I made it a relatively independent part so that readers interested
more in general causal ideas can feel free to skip the following.

In fact, versatile estimations1 of causal effect by enforcing

NOTES2:
Recall the mathematical transforma-
tion Φ shown in Equ(31) that helps
eliminate the gap between causation
and correlation. Now the back-door
adjustment is exactly a basic trans-
formation in practical causation.

an intervention do(x) can end up converging upon an atomic
deduction tool: back-door adjustment2.

P (y | do(x)) =
∑

z

P (y | x, z)·P (z). (40)

Generally, when many intervening objects do(x1), ..., do(xd) are
sequentially in estimation (the dynamic plan), an "advanced
version" named sequential back-door adjustment3 is available:

NOTES3:
Notice that here I just refer to it
directly in Equ(41), with a glimpse
to see how it mirrors the formula in
Equ(40).

P (y | do(x1:d)) =
∑

z1,...,zd

P (y | x1:d, z1:d)·
d∏

k=1
P (zk | x1:k−1, z1:k−1).

(41)
Readers might come across a bit confusion.

I mean, these extra variables z cannot occur in a vacuum. NOTES4:
In other words, how could we match
the pair variables in each of the
"phrase (k)" given a plan? (denote
variables in each of the "phrase" as
do(xk) and zk)

But should we just roughly select z from V \{x, y}? How could
we select a sequence z1:d =< z1, ..., zd > that matches4 a plan
do(x1:d) =< do(x1), ..., do(xd) >?

The whole picture is, since we know it should connect an
action do(x) with a "surgery" of the graph G, then analogously NOTES5:

Roughly speaking, Readers can view
the "surgery symbols" GX or G

X
as

the results to denote our two types
of surgery of "to hold it on constant"
or "to tweak it on compulsion".

we can marry a plan (do(x1:d)) with a series of "surgery" (πG)5:

πG =< GX1X2:d
, ... ,GX1:kXk+1:d

, ... , GX1:d
> . (42)

Tune on each G(k), the answer as to the above question is:
seeking for zk over that G(k) just by applying the well-known
back-door criterion — a set of graph testing rules6. Roles of NOTES6:

Readers who are familiar with the d-
separation criteria (the principle in
building a Bayes Net) might realize
this graph testing rules are actually
about testing the "conditional inde-
pendence" in terms of nodes in the
designated subgraph G(k).

(y ⊥⊥ xk | zk)G(k) (43)

the graph is distinctive: to test whether do(xk) can be transit to
the purely statistical expression by controlling zk (Equ(41)).

It is also similar to use the do operation rules7, given the
simple example aiming at P (y | do(x1:2)). We start turning do(x1)
to x1 as whether receiving the first-dose is fully controlled by
ourselves:

P (y | do(x1:2)) = P (y | x1, do(x2)). (44)
Then introducing m (enzyme) over the marginal probability yields: REFERENCE7

Equ(44)-(46) are the "three lines of
do-calculus", a quotation from an ex-
ample in The Book of Why, Chapter
7, where Pearl left us with a vague
meditation about that muse whisper
"Try the do-calculus".

P (y | x1, do(x2)) =
∑
m

P (y | x1, do(x2), m) P (m | x1, do(x2)). (45)

Ultimately we turn do(x2) to x2 in the front part as the second-
dose effect is now fully determined by enzyme m, and delete
do(x2) in the back as the do(x2) does not function on m.

P (y | do(x1:2)) =
∑
m

P (y | x1, x2, m) P (m | x1). (46)
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Causal Books References

Reminder : "Partial ideas from celebrated causal books (Causation, Prediction, and
Search; Causality; Elements of Causal Inference; The Book of WHY ) that are beneficial to
interpret causation are woven into the paper."

The Book of WHY

• Chapter-1. The Ladder of Causation

– Intuition as to the causation in the smallpox-vaccine example.

• Chapter-5. The Smoke-Filled Debate: Clearing the Air

– Basic ideas on randomized controlled trial (RCT).
– Hazards of unobserved confounding.

• Chapter-7. Beyond Adjustment: The Conquest of Mount Intervention

– The problem of sequential decisions and the "three lines" do-calculation, as-
sociating with the dynamic plan and the sequential back-door criterion in the
book Causality.

• Chapter-9. Mediation: The Search for a Mechanism

– Why is not "total effect = directed effect + indirected effect"?
– From the "controlled causal effect" into the "natural causal effect".
– Judea Pearl : "When I managed to strip the natural-causal-effect formula from

all of its counterfactual representation, it was the greatest thrills in my life."

Causality: Models, Reasoning, and Inference

• Chapter-3. Causal Diagrams and the Identification of Causal Effects

– 3.2 Intervention in Markovian Models
∗ Understanding intervention from the Bayesian perspective.

– 3.3 Controlling Confounding Bias
∗ Definition: the back-door adjustment.

– 3.4 A Calculus of Intervention
∗ The symbol of intervention that used in the sub-graph test for the sequen-

tial back-door criterion.

• Chapter-4. Actions, Plans, and Direct Effects

– 4.4 The Identification of Plans
∗ Definition: the sequential back-door criterion and the back-door criterion.
∗ Relations between the calculation of the natural causal effect and the se-

quential back-door adjustment.
∗ Relations between the sequential decision and dynamic plan.
∗ Graphical language of the do-calculus.

– 4.5 Direct and Indirect Effects
∗ Formalization: "controlled causal effect" and "natural causal effect".
∗ Definition: the mediation formula.
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4 Inferred Causation
4.1 Causal Diagram Learning = Data + Restriction
Conceptual ideas of causal models, such as causal attribution
and causal effect, are partially discussed in the first half of
this paper, whereas causal diagrams can be viewed as a "fine-
grained" reflection of causal models. Merits of the diagrams lie REFERENCE1:

"Structured-based" originates from
one of the top-level notion named
"structured-based counterfactuals"
shown in Causality, Chapter 7.
We can see the structure of causal
diagrams acting as a "bridge" to
convey generic information (what
we typically call as the "background
information") between a current
world and a "counterfactual world".

in the "arrow" that implies the simplicity of causal significance
and the visibility of inducing bias, deserving our discussions
as to what is a "learnable causal diagram".

4.1.1 Why Does the Equation Harbor Causal Significance?

Learnable causal graphs refer to "recovering" causal structures
from statistical data, which is why we literally get the name of
this standard task: Causal Discovery. Moral of "recovering"
hints a "losing data generation" we are seeking for — the mech-
anism embedded in the structure-based causal model1.

Causal Mechanism and Structure Causal Models

"Data-driven" learning methods might sometimes be unsta-
ble since they are statistically focusing on the data patterns
that stay on the surface of probability distributions. What if
behind the probability distribution, we assume there exists an
invariant mechanism that governs how the data is generated?

Take physics, we know force is the cause of changing the
state of motion. The principle about Newton’s laws of motion is
invariant, remaining independent of how large or how small the
force imposed on an object (hold constant the mass). Similarly,
if there exists an inherently embedded "law of causality" that
is dominating how our world is functioning, we tend to believe

Figure 24: Newton’s laws of motion,
which is an established and invariant
mechanism in physics.

Figure 25: The expectant "laws of
causality" implied by the well-known
assumption of Independent Causal
Mechanism (ICM).

such a causal mechanism is independent of its cause. The idea
behind this intuition is the celebrated principle "Independent
Causal Mechanism.2" It imposes restrictions on the data-driven
approaches to recognize patterns with causal significance.

Let us take a step back, say, applying this principle over
multiple factors, we will have a topological structure permitting

REFERENCE2:
Assuming invariant data generation
mechanisms gives an arrow (within
a diagram) an unambiguous meaning
of "governance". Readers can find
out these ideas in the book Elements
of Causal Inference.

multiple invariant mechanisms. Notice that this is the heart of
the structure-based causal models since the invariance implies
that each mechanism is an "autonomous module2". Keeping
this in mind, I want to further borrow the words from the book
Causation, Prediction, and Search : "Intervention and counterfac-
tuals are obtained with a suitable metaphysical gyration." I be-
lieve that the "suitable gyration" is partially come from "gyrating
the input for a causal diagram", if the causal model behind the
causal diagram entails the autonomous mechanism.

From my perspective, I think this is the key of forming the
world view of causal diagrams. Think of events weaving our
lifetime, for instance, as a topological structure based on their
causal relations. Obviously factors such as social wealth and
political power are crucial to resulting in a majority of events
(e.g. business success); whereas tracing back to fundamen-
tal factors, we might sense that some factors, such as inher-
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ent characteristics, potential circumstances, or even ultimately
one’s fortune, are substantially some of the causes that largely
influence our destinies. Plus, it seems that, the more we close
to the "fundamental top factors" of causal relations, the weaker
the connection among factors might be. Wealth and power might
be closely related, whereas one’s good and bad luck over his or
her lifetime might be independent against other factors.

Interestingly, if we accept the causal significance from this
moral, I would like to say that the rest of the content as to causal

Figure 26: Toy causal diagram de-
scribing one’s lifetime events as a
topological structure.

diagram learning (including mathematical theory) is, more or
less, having something to do with this fundamental ideas.

Causal Markov Framework

Let us directly start to discuss the celebrated Causal Markov REFERENCE3:
As for conditional independence,
there is a popular example of alarm-
smoke-fire in The Book of WHY.
Given a causal diagram "fire →
smoke → alarm", one knows that
there is essentially no causation be-
tween fire and an alarm (namely they
are independent), given the condi-
tion that smog is observed before-
hand.
As Judea Pearl said at the begin-
ning of his book "Causality" that,
quote, "Conditional independence is
the heart in causal modelling."

framework with an assertion from Judea Pearl’s book Causality:
"If we accept that causation cannot be inferred from statistics

alone, then the Markovian equivalent models is inevitable".
Allow me to throw out the terminologies there: "Markovian"

describes a certain property that is able to identify a certain
(unique) diagram; while the term "equivalent" partially refers to
the several diagrams sharing that same property, meaning they
are unidentifiable. Understanding the Causal Markov condition
is a great way to grasp the ins and outs of mainstream causal
discovery frameworks. My favourite metaphor is — "When the
world of causation casts a shadow, it left with the property of
conditional independence3 in the world of statistic".

The Causal Markov condition will become insightful in an
analogic thought-experiment in which (causal) arrow connec-
tions can be viewed as a pattern of the "flow of water". Suppose
I am a maintenance plumber, and my work is to help check the
direction of the flow of water within a pipe. I will manage this by
"locking" or "blocking" the junctions along the pipe, and observ-

Figure 27: Check the direction of
the flow of water by turning off the
valve at the pipe junction.

ing whether there is any change of the state of water flow (Figure
(18)). Unfortunately, if chances are, directions of the flow run

Figure 28: The three ways of water
flow that cannot be determined, be-
cause of the same state of the pipe
after turning off the valve.

Figure 29: Moral of the "pipe story":
causal-information-flow in diagrams.

in the three other ways (Figure (19)), I have no idea to tell which
one it is. The moral is to imagine the "conditional independence"
as if "locking" a pipe junction that curbs the water dependence
along the pipe. Therefore, we master something like "causal-
information-flow" just as if we are controlling the dependence
of a pipe’s water-flow. However, since we are merely work on the
outer structure of a pipe, knowing nothing inside the pipe, "the
inaccurate check about the water flow direction is inevitable."

For another thought-experiment, envision a computer with
a single push of the power button to start, allowing both the
corresponding mouse and the keyboard to work normally (e.g.
mouse ← button → keyboard). At the first glimpse, it seems
slightly contrast with the Causal Markov framework: Despite of
the total control of the button, the odds are that the keyboard
is able to work more normally while also observing the mouse
working normally. Say, consider the following possible cases: (i)
normally, the keyboard and mouse work when the button on; (ii)
normally, the keyboard and mouse are stilled when the button
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off; (iii) Unnormally, the keyboard and mouse are stilled when
the button on, implying something (e.g. inside circuit) broken.
It is the (iii) case that confuses us — given the control (the but-
ton is on), the working states of the keyboard and mouse are
dependent (relevant): working or not working simultaneously.

In fact, it is the (iii) scenario that lulls us into a false sense
of indeterminism. In other words, "two" of the manipulations

Figure 30: Examples as to the "in-
deterministic system" (a) and the
"pseudo-indeterministic system" (b).

(on and off) of the button do not fully determine the matchable
"three" of the possible states of the computer. This phenomenon
is conform to the characteristics of a indeterministic system4.
In a "microscopic" system (Figure(21-b)), however, these devices
are fundamentally "deterministic" when we totally control the
inside circuit (rather than the outer button). We refer to this
micro-level system as the pseudo-indeterministic system. The
term "pseudo" hints that the computer can only be stuck by " REFERENCE4:

Terminologies (including the follow-
ing) are corresponding to ideas in
the book Causation, Prediction, and
Search. One conclusion I borrow
herein, on the other side, involves the
fact that the Causal Markov condi-
tion will be naturally satisfied within
a deterministic system or pseudo-
indeterministic system (discussing in
the following).

exogenous" (unnatural) errors (e.g. the circuit cannot work in
my computer, but it works well in yours). What we should learn
from this though-experiment is: The Causal Markov framework
only holds in deterministic systems or pseudo-indeterministic
systems; it cannot hold in indeterministic systems.

Coming to an end, do you still remember the metaphor?
Though "casting a shadow" offers a few characteristics to take
a closer look to causation, yet, it leave a distance for us to the
elusively real appearance of causation. NOTES5:

The term "exogenous errors" are
technically referred as to "random
(namely independent) noises" that
are normally the hidden factors be-
yond one’s control.
Thus, (unknown) variables which
characterize this phenomenon are
called as the exogenous variables
over a system.

The Key: Noise Perturbation

To point out a clue, I will introduce a causal assumption
named independent noise implied by the Independent Causal
Mechanism (ICM). Virtually, it is consistent with the independent
exogenous errors5 that I mentioned above. Notice that when the

REFERENCE6:
The pseudo-indeterministic system
naturally yields the Causal Markov
assumption. This has been proved in
Causation, Prediction, and Search.

errors over a system is exogenous, it will consequently produce
the pseudo-indeterministic system, which is exactly giving rise
to the Causal Markov systematic natures6. Thus, we see how
causal discovery frameworks have been emphasised from dif-
ferent views, while ultimately boiling down to a quintessence of
causal significance: perturbation of noise.

So, why is an independently perturbative noise (sounds like
a bad thing) so imperative for causality? Personally I believe
it entails a type of metaphorical evidence of "how God create
the world". Whenever there is an assignment of the certain
cause from God, there is randomly an assignment of a mild
perturbation — the noise where God encapsulates the potential
uncertainty of the remainder. In other words, an "unexpected
perturbation" is necessary since, compared to the omniscient
God, it reflects our ignorance about the world and our destiny.

Following that logic, if one has entirely controlled all certain
factors via manipulation, condition, and intervention, then

Figure 31: How God create the
world? Does God play dice (to make
some noise) but essentially conquer
the causation over our destiny?

we believe that not any correlation should have left because
the remainders are insignificant perturbative noises. There-
fore, this idea has become the heart of modern causal diagram
learning frameworks. As romantic words I would like to say:

"Causation is given birth from perturbation."
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Mathematical Formalization

Reminder : I additionally attach this part alone to discuss the OUTLINE:
- Bayesian Net and D-separation
- Structure Equation Models

formalization as I fully convinced one of Judea Pearl ’s points,
quote, "it is the formalization that eliminates the metaphysical
controversy from causation by using elementary mathematics."
Nonetheless, several formulas may be necessary to be included.
I made it a relatively independent part so that readers interested
more in general causal ideas can feel free to skip the following.

Remembering at first, I was seemly told that causal models
are particular forms inherited from dominating models such as
Bayesian Network (BN ) and Structure Equation Models (SEMs).
A bit surprised, however, I later recognize that BN and SEMs
have fundamentally derived from their own causality definition.

Firstly, we interpret the Causal Markov condition from the
construction of BN, whose skeleton commonly represents for
the direct acyclic graph(DAG). Readers who are familiar with BN
may know that an "engine" to infer the arrow between cause (C)
and effect (E) over BN lies in the celebrated Bayesian formula:

P (C|E) = Bayesian (P (E|C) , P (E)) . (47)

The inversion property though, seemly blurs the BN ’s causal
semantics, permitting it to compute "unrealistic probabilities"
P (Cause | Effect) where the effect happens before the cause.
Naturally, the arrow within the network should have entailed
causality on its own, meaning that not only BN is empowering
probability across the DAG, but in consistent with our cognition
where causal relations in real world prone to be sparse1. NOTES1:

Thus we literally should not draw an
arrow between C and E in BN, if
there is not undoubtedly causal re-
lations between them.

Speaking of sparsity, in graphical fashion to model the spar-
sity, we avoid the fully connected DAG or BN by using:

• the symbol "⊥⊥" describing C and E are "separated";

and projecting the sparsity relatively to probabilities with:

• the symbol "⊥⊥" implying independence between C and E.

Modeling the sparsity property amounts to seek for a con-
nection, from a graphical perspective to a probabilistic one, of
modeling the independence property:

(C ⊥⊥ E)G ⇔ (C ⊥⊥ E)P . (48)

Thus it has surreptitiously brought a celebrated criteria into REFERENCE2:
In Chapter 6 of the book Elements
of Causal Inference, the notion of d-
separation has all been a preferred
introduction before talking about the
(constraint-based) causal discovery.

our discussion: d-separation, a criteria advances construct-
ing connections between graph and probability2. To approach
this, the d-separation criteria needs to clarify it is who (W ) that
separate(s) C and E from each other, also depicting W as the
one should be set in condition on in probabilities:

(C ⊥⊥ E |W )G ⇔ (C ⊥⊥ E |W )P . (49)

More formally, on top of BN ’s economical representation of
joint probability functions leading to factorization commonly
shown in Equation(51) (denote parents as pa):

P (V ) =
∏

V ∈V

P (V | pa(V )). (50)
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BN also acts as a "carrier" of the conditional independence re- NOTES2:
The Markov condition has also been
used as the definition as BN (denote
descendant as de):

X ⊥⊥ V ′\{paX∪deX} | paX . (51)

lationship, if running through the graphical angle. Which is
to say, shown in Equation(53), applying the Markov condition2

(simply denoted as Ma(·)) with respect to BN (denoted as graph
G) should yield a list of relationships of conditional independence
among variables V (here we denote V ∗ = V \{Vi, Vj}).

Ma(GV ) = {(Vi ⊥⊥ Vj | V k) | Vi ̸= Vj , V k ∈ V ∗} . (52)

The point is, back to the probability angle, we claim the NOTES3:
The Markov compatibility shown in
Equation(54) further clarifies the
connection between graph and prob-
ability based on Equation(49).

Markov compatibility3 property if the (statistical) conditional
independence implied in the distribution P (GV ) perfectly coin-
cide with the one implied by the Markov condition Ma(GV ):

(Vi ⊥⊥ Vj | V k)Ma(GV ) ⇔ (Vi ⊥⊥ Vj | V k)P (GV ). (53)

The Markov compatibility reflects a crucial idea behind modeling
BN since Ma(GV ) characterizes the modeler’s (causal) assump-
tion (e.g. in form of the "sparsity" of graphs) towards the data
generation procedure, which ultimately leading to (statistical)
conditional independence over empirical distribution P (GV ).

Nevertheless, computers obviously do not bear knowledge
about Ma(GV ) to further ascertain the compatibility. In fact, we
teach machines and design algorithm to obtain them based on,
again, the significant d-separation criterion. As a consequent NOTES4:

Recall the "pipe-story" example in
the introductory part. Given a pipe
connection I-K-J, if we turn off the
valve on the junction K, then we
"separate" the water "dependence"
between I and J.

result, the d-separation criterion naturally becomes the prod-
uct of the Markov condition, and perhaps more significant, it is
more reasonable to understand the d-separation criterion from
the causality point of view. We determine the directions as to
the "flow of causal information" (e.g. ∗ − ∗ represents possible
directions → or ←) via (indirectly) determining the separation
ability of some "junction4 variables Vk":

Vi ∗ − ∗ V k ∗ − ∗ Vj . (54)

Secondly, the Independence Causal Mechanism (ICM) would
start from the definition of Structure Equation Models (SEMs)
shown in Equ(56). The term "structure" implies the noise N
should be irrelevant with C. In other words, no matter the
statistics relations between C and B, the (causal) coefficient β5 REFERENCE5:

In the literature, the original defi-
nition of the coefficient β in SEMs
is the "causal effect" (within a lin-
ear system). However, this fact has
become slightly ambiguous since the
manipulation C = 1

β
(E − N), mak-

ing the coefficient β becomes trivial
in an absolute equation.
Borrowing the statement from Judea
Pearl in the book Causality: "Now,
speakers of the SEMs language are in
search of its meaning."

is invariant, which exactly conforms to the notion of "invariant
causal mechanism" and "independence noise assumption".

SEMs : E := βC + N. (55)

In fact, the Structure Causal Models (SCMs) are non-parametric
versions of the SEMs (E := f(C) + N ). weaving the SCMs into
the ICM framework, we naturally conclude:

( P (C) ⊥⊥ f ) or ( P (C) ⊥⊥ P (N) ). (56)

Therefore, from the causality point of the view, I wish I can
briefly introduce my readers these two models BN and SEMs
retrospectively (or maybe that is the exact way we should be),
so that readers might get a sense about how the modern causal
discovery frameworks such as the Causal Markov Condition and
the Independence Causal Mechanism have developed based on
these conventional models.
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4.1.2 Restrictions Give Rise to Identification

The previous section gives an overview of causal diagram learn- REFERENCE1:
A "learnable" causal diagram from
data should provide us an unam-
biguous way to interpret the data.
We anticipate the data pattern is
precisely represented by an unique
causal diagram (because something
unambiguous and unique means it
can be used for precise prediction).
In terms of graphs, we are expecting
the particular nature of the causal di-
agram: Structure Identifiability.
Relevant topics can be found in the
book Elements of Causal Inference,
Chapter 7.

ing frameworks, specifying why "causal discovery" is meaning-
ful at the first place. To further apply these principles over data,
we now need to focus on the "identification1"— identify causal
diagrams from observational data. The whole picture of this
section is that, bonding particular restrictions to the funda-
mental principle will draw a (strict) line between what is causal
and what is non-causal.

Restrict the Trait About Causal Dependence

We have already seen how Causal Markov framework builds
a "matching pattern" between the world where causal graphs
sit and world where our every-day events happens (e.g. We can
associate the causal connection with the dependence of water
flow in our daily lives). Yet this matching pattern is not per-
fect enough. Though the Causal Markov framework defines the
"normal causal relations", it does not limit the emergence of
"abnormal causal relations2". The causal diagram entailing the NOTES2:

In order words, the Causal Markov
framework will still even hold on,
even giving mixtures of both reason-
able and absurd causal relations over
a causal diagram.

abnormal relations, however, certainly would not be the truly
justified one for which we are seeking. Hence, when we require
to ensure a "normal relation" and end up reaching a "perfect
match pattern", some additional restrictions are necessary.

Here the restriction is: constraints of Causal Minimality
and Causal Faithfulness. In fact, these are two of the names NOTES3:

Recall the thought-experiment in the
previous section. Assuming my work
as a plumber is to help check the di-
rection of the pipe’s water flow, I will
check the state of the water flow by
"locking" or "blocking" the junctions
along the pipe.

that you would often hear when digging deeper into the Causal
Markov condition.

To illustrate them straightforwardly, back to the thought-
experiment context3 where we started introducing the Causal
Markov condition. Suppose the pipe connecting three of the
supply places (A → B → C). I will ensure the water supply in
places A and C functioning normally via pipe A-C, after I worked
on locking the valve located in B and consequently observing
the flow of water from A to C. Such a simple logic, namely
the water supply between two places are dependent whenever
given a (normal) pipe, is where the"Causal Minimality restric-
tion" have stood. From personal perspective, I prefer to think
of the "Minimality" like this: I would not be delightful if there is
nothing happen on pump A-C given a locked valve at B — since
initially I anticipate a "minimum amount" of checking workload,
whereas now, there must be something abnormal occurs (e.g.

Figure 32: The workload would not
be the minimum one if the relation of
water dependence given a pipe does
not fit the normal situation.

the pipe that should have carried water might has something
broken inside). In other words, the real situation does not fit
well the "normal causation", unfortunately leading to some ex-
tra checking work (compared to the minimum checking work at
the begin, in which "the causation functions well given a pipe").

Applying the moral about this plumbing-story into the other
thought-experiment4, we expect the same picture where thing NOTES4:

Review the example I introduced
in the previous section, where the
Causal Markov condition ensure the
working states of mouse and key-
board are "independent" if one has
controlled the battery button.

can function normally (Fig(22)). The Causal Markov condition
ensures the working mechanism itself of either the mouse or
the keyboard is "irrelevant" with each other — they are working
or shutting down simultaneously just because someone con-
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trols the computer’s power switch. The "Causal Faithfulness
restriction", on the other hand, ensure the "relevance" of the
connection among the devices, making both mouse and key-
board normally depend on (or "listen to") someone’s control.

Figure 33: The causal faithfulness
restriction expects an absolute de-
pendence (the arrow are highlighted
as red), without any "accident" fault
such as the "bug" occurring in the
electric circuit.

While both of them mount constraints on dependence that a
"normal regularity" should entails, the "Faithfulness restriction"
is stronger than the "Minimality restriction". If possible, we tend
to rule out everything absurd, abnormal, and "unfaithful" to our
cognition. For instance, we do not expect that, sometimes, the
flow of water would have maintain still even the valve has been
released; we also do not expect that our mouse or keyboard
get faults every so often just without causes (Fig(22)). These
(stronger) expectations are all encapsulated into a general and
thus stronger condition: the "Causal Faithfulness restriction".

The pivotal idea is: These restrictions, such as "Faithfulness"
and "Minimality", are not concepts as obscure as it literally looks
like. Conversely, they are relevantly on behalf of our normal
cognition: anticipating the normal relations among things can
perfectly match with the regular traits behind it. Hence, that NOTES5:

e.g. the normal relations of water
dependence in the plumbing or elec-
tric component connection among
the devices.

relations, entailed by certain regularity’s traits, are more likely
to be the causal relations5, making the structure representing
a regularity more likely to be an uniquely appropriate causal
diagram—the causal diagram for us to identify from data.

Restrict the Complexity About Causal Mechanisms

We probably hear of the "Bayesian Method", the “inverse REFERENCE6:
Again, I briefly borrow an exam-
ple context shown from The Book of
WHY, Chapter 3.

probability” analysis left by Thomas Bayes who was once a math-
ematics geek. In the following example6, let us briefly see the
relationship between that "inverse probability" and our causal
cognition. Suppose Bobby throws a ball toward a window, it
is easy to predict the mechanism where the action of throw-
ing may break the window most of the time—due to the "law of
physics" (e.g. ball’s mass, force, velocity, ect). Given a broken
window, however, it seems hasty to making a deduction that it
is Bobby who threw a ball toward the window. Though analy-
sis of "Bayesian inverse probability" is designed to help break
this cognition asymmetry, we should recognize the prompt by
our causal cognition: the "inverse mechanism" is complicate. If
the tricky backward mechanism does exist, it will require fitting
multiple background conditions (Fig(25)). In contrast, when

Figure 34: The cognition asym-
metry: which of the mechanism is
the causal one (simple or compli-
cate)? Given a broken window,
several things might be associated:
cracked by a hammer, broke by
throwing a ball, attacked by extreme
weather.

a general mechanism can virtually fit well, we tend to believe
such a mechanism is more likely to entail causation, partially
because the simple one captures the "law of causation".

Restricting the complexity indicates that, practically, learn-

REFERENCE7:
This is one of the important opinions
of the book Elements of Causal In-
ference (Chapter 4).

ing a one-size-fits-all mechanism is more preferable. This does
not necessarily means that the causal mechanism must be truly
simple. In fact, we just tend to bear in mind a priori: the sim-
pler a hypothetical mechanism is enough to fit the data, the
more likely the mechanism can genuinely describe the causal
relation7. After all, most of fundamental effective principles or
guiding rules are invariably straightforward, wouldn’t it?

26



Mathematical Formalization

Reminder : I additionally attach this part alone to discuss the OUTLINE:
- Minimality Assumption
- Faithfulness Assumption
- Statistical-Indistinguishability
- Faithful-Indistinguishability

formalization as I fully convinced one of Judea Pearl ’s points,
quote, "it is the formalization that eliminates the metaphysical
controversy from causation by using elementary mathematics."
Nonetheless, several formulas may be necessary to be included.
I made it a relatively independent part so that readers interested
more in general causal ideas can feel free to skip the following.

In order to yield a identifiable result, different restrictions
substantially represents the intensity of different "standards"
that we expect to reach to narrow the connection gap between
probabilities and graphs. Fig (35) explicitly illustrates the range
of relatively different standards amidst causal discovery, which
also shown as different constraints from an "omniscient view".

Methods following this philosophy, such as the SGS algo- REFERENCE1:
These are state-of-art constraint-
based causal algorithms that readers
can learn more in the book Causa-
tion, Search, and Prediction.

rithm and the PC1 algorithm, discover the causal diagram by
discovering the statistic traits of independence from the general
hypothetical dependence (imagine a solid circle representing all
the possible dependence in statistic). To connect it with graph,
take PC, the methodology starts with a complete (undirected)
graph with full connections and then conduct independence
test to remove unnecessary connections (imagine a hollow circle
representing the discovering independence is expending now).
It stops until not connection can be removed anymore and turn
to finalize causal directions — expecting remaining connections
might perfectly match their causal significance from the true
causal (directed) graph. In contrast, if it keeps on removing
the connections that entails causation, then it will enlarge the
"unnecessary independence" that does not be included by the
Causal Markov condtion (from an "omniscient view" (shown in
Fig(35)), we can see when the expending hollow circle should
finally stop at an exact "border" without further "breaking in"
the vicinity range, which should be promised by the Causal Min-
imality and Faithfulness restrictions).

Figure 35: The range of relatively
different standards amidst causal
discovery. Given initially general
dependence and independence from
data, "Markov constraints" specify
the (conditional) independence that
implies the causal significance; and
the "Minimality and Faithfulness
constraints" ensure the remaining de-
pendence. Searching by the causal
discovery algorithms, final estimated
causal graphs satisfying these con-
straints are involved in the margin
(gap), which are also referred to as
"Markovian Equivalents".

Though saying "remove unnecessary connections" is similar

NOTES2:
This is possible since "accidents" or
"unexpected noise" might impact the
statistic independence test (e.g inde-
pendence test over mixing data can
sometimes trigger "abnormal" inde-
pendence, which is not implied by
the separation in the graph).

as saying "expend the hollow circle or enlarge the unnecessary
independence", notice that the hollow circle can still continues
to expend even if we keep unchanged the connections2, which
is why I draw the Faithfulness restriction at the outermost. As
mentioning previously, the Faithfulness restriction ruling out
every "unfaithful" dependence is stronger than the Minimality.

Thus, the range within that border can be viewed as reach-
ing the standard of the Markov restriction from the direction of
sufficiency; the range outside of that border is able to be seen
as reaching the standard of the Faithfulness restriction and the
Minimality restriction from the direction of necessity.

Combining together, two types of the restrictions expect an
algorithm to end up with a narrow border with few "margins".
Eventually, the narrower the "margin gap" is, the less likely the
final graph equivalents can satisfy the same restriction, mean-
ing reaching a perfect (unique) match.
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Additionally, the Minimality condition puts a constraint on
BN, which confines the network connection to reach "the most
economical" level. When it satisfies the Minimality condition,
edges can not be taken away from BN since that operation would
"maximize" the degree of conditional independence beyond the
range yielded by the Markov condition.

Γ[Ma(GV )] ≤ Γ[Ma(GV )], (57)

where Ma(·) simply denotes applying the Causal Markov condi-
tion, Γ denotes the volume of independence relations entailed REFERENCE3:

The two types of unidentifiability are
referred to the "Strong-Statistical
Indistinguishability (s.s.i.)" and the
"Faithfulness Indistinguishability
(f.i.)", which are introduced in the
book Causation, Prediction, and
Search, Chapter-4.

by the Causal Markov condition.

The Causal Markov framework constructs the elementary
connections between the probability and the graph (the same as
constructing BN based on the Markov condition). We typically
need to impose the additional Minimality limitation to narrow
down the selecting range, and hopefully ends up with nearly a
one-versus-one connection.

Interestingly, flipping the case around yields the standards
of "unidentifiability": the Minimality and Faithfulness uniden-
tifiability3. However, the Minimality unidentifiability is stronger
than the Faithfulness one. We can clearly aware this by drawing
a number axis in Fig(36).

Why do I repeatedly discuss different intensity relative to the
"standards" in terms of identifiable and unidentifiable cases? If

Figure 36: Illustration of different
causal intensity (restriction) of iden-
tifiability and unidentifiability.

we agree to this matching methodology applied by constraint-
based algorithms, it is more reasonable to accept that most
of the unidentifiability raised by unmeasured common causes
(namely the latent confounder, will be discussed in the next
section) are at the end of the other spectrum. So aside for the
identifiable causal diagrams, we also need to contrive the other
expressive causal diagrams to represent unidentifiability.

Strictly speaking, discovering independence largely lies in NOTES4:
If we accept that causation cannot be
inferred from statistics alone, then
the Markovian equivalent models is
inevitable;
In another words, that "margin" we
mentioned previously is always exist-
ing no matter how "narrow" it is.

discovering the so-called "V-structures" — "sub-components"
contributing to finalizing causal directions. Attain equivalents
is essentially common since we cannot absolutely determine all
the directions4. However, by learning how intense each restric-
tion is, we bear knowledge about characterizing causal graphs
into equivalent classes (based on varying degree of restrictions).

This philosophy, from my perspective, is the quintessence of
independence-test-based causal discovery. It is a beauty that
shrinking the gap between graph and probability step-by-step;
Yet one might still be wandering whether it is possible to make a
"huge step" leading to more directed identification, which brings
us to the next restriction: causal mechanism complexities.

Notice the fact, that we do admit different probability factor-
ization to numerically describe a joint distribution P (C, E):

P (C, E) = P (E | C)P (C) = P (C | E)P (E). (58)

Whereas this equivalent essentially does not account for P (C, E)’s
generation procedure. Behind the fixed and visible P (C, E), we
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tend to believe there exists an intangible class of mechanisms
or functions {F} that describes how P (C, E) is given birth to:

P (C, E) := F(P (E | C), P (C)). (59)

The moral is, mechanism F seems "natural" from cause C to ef- NOTES5:
Alternatively, the same class {f}
will be less persuasive when apply-
ing to the case in which C and E are
swapped.

fect E, not vice versa5 (compared to the factorization in Equ(59)).
Such "common sense" is the essence of restricting the class {F}
into a "simple" spectrum because a reversing mechanism from

REFERENCE6:
In (functional-based) causation, one
of the popular way to model the
complexity involves the Kolmogorov
complexity as an algorithmic infor-
mation theory.
Meanwhile, this will also become
natural from the machine learning
point of view, where we limits our
"fitting function" within a "reason-
able" model class (e.g. polynomial
function) in standard tasks such as
regression and classification.
Relevant details can be found in the
book Elements of Causal Inference,
Chapter 7.

E to C is prone to be unnatural, weird, and — complicated6.

We might then wish to learn physical formalism of F . Recall
our example in the introductory part that "most of time forcibly
throwing a ball will result in a broken window". Here the words
"most of the time" hints that, other factors (e.g. temperature,
places, the window material) are trivial compared to the main
cause (throwing a ball). This rough intuition gives a sense about
how to select a concrete restricted mechanism F by Equ(60):

F(P (E | C), P (C)) := f(P (C)) + P (E | C), (60)

where we break down P (C) and P (E | C) within an additive
causal model, imposing certain functional mechanism f merely
on P (C). In the additive model, "other factors" enveloped by NOTES7:

e.g. non-additive models such as
F := f(P (C)) × P (E | C)) might
seem less intuitive, as the effects of
P (E | C) within F might make the
main cause C more susceptible to the
other factors.

P (E | C) are trivial with only the "shifting"7 impact on the "main
cause" C. Since we expect P (E | C) should be insignificant, the
common Gaussian distribution is often assigned at P (E | C).

Finally, notice that we do not require the form of f most the
time — generally f is non-linear. However, if f is confined to
be linear (typically a linear mechanism is sightly trivial than
the non-linear one, e.g. exponential functions grows fast than
linear functions), we might naturally want to impose restriction
on P (E | C), making it sightly non-trivial to reach a "balance".
In fact, when f is a linear, we exactly assign the non-Gaussian
distribution to P (E | C) to maintain its causal identification.

These are namely two of the representative causal models in
"functional-based" methodology: ANMs and LiNGAM. Readers
can learn more about these "identifiable functional model" in
the book Elements of Causal Inference, Chapter 4 and 7.
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Causal Books References

Reminder : "Partial ideas from celebrated causal books (Causation, Prediction, and
Search; Causality; Elements of Causal Inference; The Book of WHY ) that are beneficial to
interpret causation are woven into the paper."

The Book of WHY

• Chapter-3. From Evidence to Causes: Reverend Bayes Meets Mr. Holmes

– Intuition as to the causal complexity in inverse probability calculation.

Causality: Models, Reasoning, and Inference

• Chapter-1. Introduction to Probabilities, Graphs, and Causal Models

– 1.1 Introduction to Probability Theory
∗ The initial causality connotation within Bayesian Networks.

– 1.2 Graph and Probabilities
∗ Definition: the Markovian compatibility.
∗ Relations between the construction of a Bayesian Network and the D-separation.
∗ Intuition as to the causal information flow.

• Chapter-2. A Theory of Inferred Causation

– 2.2 The Causal Modeling Framework
∗ Relations between the independence disturbance and Markov property.

• Chapter-5. Causality and Structural Models in Social Science and Economics

– 5.2 Graph and Model Testing
∗ "If we accept that causation cannot be inferred from statistics alone, then

the Markovian equivalent models is inevitable."

Causation, Prediction, and Search

• Chapter-2. Formal Preliminaries

– 2.5 Deterministic and Pseudo-Indeterministic Systems
∗ The natural satisfaction of Markov condition.

• Chapter-3. Causation and Prediction: Axioms and Explications

– 3.4 The Axioms
∗ Definition: the Causal Markov condition.
∗ Definition: the Causal Minimality and Faithfulness condition.

– 3.5 Discussion of the Conditions
∗ Examples of Markov condition in micro-system analysis.

– 3.7 Consequences of The Axioms
∗ Intuition as to the interpretation of D-Separation by the water pump.

• Chapter-4. Statistical Indistinguishability

– 4.1 Strong Statistical Indistinguishability
– 4.2 Faithful Indistinguishability
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Elements of causal inference: foundations and learning algorithms

• Chapter-4. Learning Cause-Effect Models

– 4.2 Methods for Structural Identification
∗ Definition: functional causal capacity.
∗ General algorithmic information theory applied to causal function.

• Chapter-7. Learning Multivariate Causal Models

– 7.1 Structural Identification
– 7.2 Methods for Structural Identification
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4.2 Challenges: Unmeasured Common Cause
So far, the context of causal diagram learning has not involved
the circumstance in which the variable system represented as
the dataset can be essential "incomplete" — some variables in
a complete system are just missing.

In order words, compared to an omniscient causal diagram
reflected by an complete system, most of the time we need to
face the challenge as to learning a relatively "smaller" causal
diagram given a "smaller" dataset observed from the system.

Following one of the primary ideas1 of the book Causation, REFERENCE1:
The issue of the existence of latent
confounder is the most important
topic discussed in Chapter 6 and 7
in the book.
Actually, the book is exactly seek-
ing for a better way for "prediction
in causation" and "causal diagram
search" when it comes to the context
with latent confounders.

Prediction, and Search, presence of the unmeasured common
cause (latent confounder), however, should arguably be the
intriguing part of causal diagram learning since unmeasured
common causes are virtually ubiquitous in practice, and it has
long been a conundrum waiting for crack. As for the last section
of this paper, I will attempt to provide some open perspectives
relative to the problem.

Topic: Education, Experience, and Salary

Let us continue the discussion on the example "education,
experience, and salary" from The Book of Why. Suppose we
were conducting control experiments looking for a certain firm
to see whether the higher education levels potentially contribute
to an employee’s salary. Meanwhile, it is known that an experi-
enced employee are also likely to get a high payment (experience
→ salary). Thus such a relevant factor should be controlled be-
forehand, ensuring unbiased measurements of the causal effect
we are truly interested in (education → salary).

Figure 37: The popular example of
"education, experience, and salary",
with undetermined relations between
"education" and "experience".

Given the candidates of employees, and before enforcing the
controlled experiments, suppose we might not sure about the
exact relation between the employee’s education degree and the
employee’s working experience. The odds are, some candidates
would refuse to engage further study in order to spend extra
time in advancing working experience (education→ experience).
In contrast, it is also possible that the other candidates’ excel- NOTES2:

To slightly remind, this choice before
the controlled experiment becomes
vital since "controlling the variable
or not" should be cautiously treated
when it comes to the causation with
unmeasured common cause. We will
see this opinion in the following.

lent attachment in working experience just in turn hints that
they are more excel at their study (experience → education).

Namely, the factor "experience" can stand for an interme-
diate factor (education → experience → salary); or it can also
represent the common cause (confounder) of education and
salary (education ← experience → salary). Thus, considering
the difference, should our operation include measuring the "ex-
perience" factor before the experiments? Or should we just keep
it as an unmeasured common cause (latent confounder)?2

Furthermore, if it were implied to directly ask people’s salary,
or if it were abstract to truly assess one’s working experience
(e.g. one’s real competence reflected by the working experience
is hard to be directly evaluated), then one of the approach is

Figure 38: Use questionnaires to
infer "superior" factors in the first
place, because the "superior" factors
(instead of the questionnaires) are in
the causal semantics of cognition.

to design pies of questionnaires to assembly characterize these
factors we interested in. In other words, all the factor we truly
care about have invisibly become the "superior" factors upon
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our cognition, and the interesting point is that these "superior"
factors are now the unmeasured common cause with respect
to the several questionnaires. The point lies in how could we
infer the "superior" causal relations based on the "subordinate"
information gathered from the questionnaires?

The Challenge of Latent Confounders: Horizontal and

Vertical

Prior to learn about what adaptions could be made to fix the
challenge, the essence of above examples can boil down to the
following two perspectives:

Figure 39: The challenge from the
horizontal perspective: perception.

Figure 40: The challenge from the
vertical perspective: elaboration.

• Horizontal: Perception3. Perception is often imperative than

REFERENCE3:
There is a similar opinion by Judea
Pearl from Causality, Models, Rea-
soning and Inference:
"Generally, signal sensing is more
fundamental to the notion of causa-
tion than manipulation".

operation in causality. Does there exist a particular type
of causal diagram which is capable of providing an elastic
space to perceive the uncertainty from the possible un-
measured common causes?

• Vertical: Elaboration4. Low-level data measurement could

REFERENCE4:
This "elaboration problem" with un-
observed variables is introduced in
the book Causation, Prediction, and
Search, Chapter 10 and 11.

be viewed as "multiple projections" from a single high-level
(hidden) source that elaborates causal semantic. Does the
"structure of projection" in turn leave us some insightful
clues to detect the structure itself?

In terms of perception, we develop the concept from the causal
path into the inducing path. As for elaboration, we would see a
noble statistic constraint named the Tetrad Constraint beyond
Conditional Independence Constraints. Above all, the following
content we will introduce aims at providing powerful theoretical
tools which serve as a guiding principle for the current causal
discovery algorithms to tackle the challenge of causal diagram
learning with unmeasured common causes.

From the Causal Path to the Inducing Path

Mentioned in the previous section, conditional independence
is the heart of causal diagram learning framework. This frame-
work, however, entails an implicit condition where all variables
should be sufficiently observed. Lining up with the challenge
of "unobserved variables" perception , we thus need to broaden
the "horizontal boundary" that causal diagrams use to describe
the connection among variables.

Yet, if not for unmeasured common causes, it does make
Figure 41: "Correlation is not causa-
tion." However, removing the condi-
tional independence, the rest of the
correlation is causation.

sense to purely concentrate on "removing" the redundant de-
pendence by the signals (causal significance) as to "conditional
independence" (illustrated in Fig(41)), meaning we are confident
that the remaining dependence will undoubtedly imply causa-
tion. Conversely, causation could not longer be simply obtained
by "removing" the independence since the dependence is now a
mixture of both causation and, the trickily spurious correlation
from unmeasured common causes(illustrated in Fig(42)).

Figure 42: "Correlation is not causa-
tion", even the conditional indepen-
dence has been removed, due to the
existence of latent confounders.

Roughly speaking, the "conditional independence" herein can
be similarly attached by the controlled experiments that we
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mentioned in the previous few paragraphs. Thus, the general
dependence between two variables "education" and "salary", for
example, might not be able to entails the causal significance
(conditional independence) after the controlled experiments if
considering the existence of unmeasured common causes. This
possible uncertainty, can be described as there presents an in-
ducing path between "education" and "salary".

In order to interpret the concept of the inducing path, let us
back to our example. We describe a path as "inducing" because
of the following dilemma:

• 1) Suppose we do not control the variable "experience",
then we fail to infer causation between "education" and
"salary" since the factor "experience" is possible to be an
unmeasured common cause (education ← experience →
salary) leading to confounding bias.

• 2) Assume we do choose to control the variable. However,
considering the other possible mechanism (education →
experience → salary), conditioning on the factor "experi-
ence" will mistakenly "induce" spurious correlation.

Let us discuss more about the meaning of dilemma (2).

Suppose that the people who refuses to pursue the higher
educational degree (in order to spend more time in accelerating
the working experience) happens to be the people who owns
the "first chance" to work in certain companies. However, we do
not have any priori knowledge with respect to what might offer
someone such a "first chance" to work. Perhaps someone just
happens to have strong connections with the leading figures in
the company they work, and that connections bring the person
more potential opportunities to obtain high salary in a certain
company (experience← social connection→ salary). Notice that

Figure 43: Illustration of an induc-
ing path: education → experience
← unknown characteristic → salary.
Notice that the "sub-path" education
→ experience← unknown character-
istic forms a "V-shape connection",
which is prone to induce bias after
controlling the collider "experience"
in that "V-shape connection".

such a factor that has already beyond our control is the (real)
unmeasured common cause.

The most tricky problem is, when we continue to conduct
controlled experiments based on that "particular" group of peo-
ple, we "induce" the spurious correlation stemmed from an un-
known common cause (education← social connection→ salary):
people who obtains relatively the lower educational degree tend
to achieve a high payment. But maybe the truth is — these are
"particular" group of people who has the great opportunity and
social connection to work early and ask for handsome income.

Thus, an inducing path can be activated by our control and REFERENCE5:
The hazard of the "V-shape connec-
tion" (or V-structure) is highlighted
in The Book of WHY, Chapter 5.

simultaneously induces another unmeasured common cause.
From the perspective of causal diagram ( (shown in figure(43)),
this phenomenon amounts to activate a "V-shape connection5",
given the possible relation education → experience.

Moving on, recall that in the previous section we have known
that the ideation of causal diagram learning lies in uniquely
matching the patterns between graph and probability. Mean-
while, the inevitable weakness involves the issue of equivalent
classes, and we did not go any further about the representation
of equivalent classes. But, when unobserved common causes
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come along, it should not be overlooked. This is because the
attentions of representing the equivalent classes are gathered
from the "independence" to the "dependence" where the mixture
of both causation and spurious dependence only increases the
matching diversity and complexity between graph and proba-
bility. Therefore, this isthe reason why we need to define the

Figure 44: Different matching diver-
sity between the Markov equivalent
and the inducing path graph equiva-
lent. The later one further consider
the existence of latent confounder,
and use flexible graph edge symbols
to rule out some impossible cases in
order to reduce matching diversity.

other inducing path graph equivalents6 (described in Fig(44)),
where the symbol o → that shows a circle at the end of edge is
partially the element of the inducing path (representing the pos-
sible relations → or ←).

Having the guiding model in mind in which the uncertainty
triggered by unmeasured common causes is elastically captured,
one could image that causal algorithms are driven to uncover an
information-maximization graph equivalents6 based on the
observed data (e.g. trying to determine the o→ symbol as many
as possible). The graph equivalents is an emblem of perceiving
the causal knowledge before starting the next-step operation.
Specifically, state-of-art algorithms such as the PC and the FCI

Figure 45: Development of the state-
of-art causal diagram learning algo-
rithms.

REFERENCE6:
These are technical but important
terminology in causal diagram learn-
ing with latent confounders, referring
to the book Causation, Prediction,
Search, Chapter 6 , 10 and 11.

algorithm (Fig(45)) are developed in light of the different "object
type" of the causal diagrams (e.g. Markov equivalent or induc-
ing path graph equivalent ), further reducing computational cost
and gaining popularity over the last two decades.

From CI Constraints to Tetrad Constraints

Take causal semantic, the "structure of projection" entailed
by latent confounders formally stands for "elaborated models",
" indicator models", or "measurement models"6. Good news
is, insightful clues to causal inference are still available and the
idea behind it is about the "trade-off" — the model constraints
to simplify usually brings the statistics strength to identify.

We assume linear elaborated models, for instance, where we
believe the salary levels are uniformly and proportionally vary-
ing with the employee’s working experience. We also presume
causal purity6. Like, simultaneously observing an employee
performing well on the task in both the questionnaires A and B,
should be essentially interpreted as the result from the working
competence of that employee, instead of "questionnaire A being
the cause of B" or vice versa. Such model restrictions including
linearity and purity actually remain ubiquitous for the purpose
of simplicity, hence bring us additional insights to identify the

Figure 46: Intuition of the tetrad
constraint. First step: using tetrad
constraints to find out the cluster.

causal structure even with the presence of latent confounders.

One type of such additional benefits has a popular name
"vanishing tetrad difference" or "tetrad constraints6". Notice
that the conditional independence constraints in form of "A is
independent to D given the condition B and C", for example, are
insignificant given the elaborated model. That is because when
A, B, C, D act like the measurement of questionnaires, they are
all confounded by superior latent factors in the higher causal
semantic level. However, the tetrad constraints move beyond
it, implying different intriguing mathematical patterns such as

Figure 47: Intuition of the tetrad
constraint. Second step: Infer causal
relations among the superior factors
based on tetrad constraints.

"AC −BD = 0" (vanished into zero) that are consistent with the
different models under linearity and purity constraints.
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Mathematical Formalization

Reminder : I additionally attach this part alone to discuss the OUTLINE:
- Inducing Path and D-Connection
- Partially Inducing Path Graph
- Constraint-based Causal Discovery
- Possible-D-separation Set
- Definite Discriminating Path

formalization as I fully convinced one of Judea Pearl ’s points,
quote, "it is the formalization that eliminates the metaphysical
controversy from causation by using elementary mathematics."
Nonetheless, several formulas may be necessary to be included.
I made it a relatively independent part so that readers interested REFERENCE1:

In terminology, the variable system
that is "complete" or "incomplete"
(with or without missing variables)
can be described as satisfying "causal
sufficiency" and "causal insufficiency"
respectively (See in the book Causa-
tion, Prediction, and Search).

more in general causal ideas can feel free to skip the following.

Suppose we have a (complete) vertex set V that satisfies
causal sufficiency1, then X and Y are not d-separated2 by
any subset Z of V ∗ = V \{X, Y } if and only if there is a causal
path (CP) over V between X and Y .

NOTES2:
Recall that the d-separation crite-
rion is naturally the product of the
Markov condition. We discussed
that in Section 4.1.

CP (X, Y )⇔ (X ⊥̸⊥ Y | {Z | Z ⊆ V ∗})G . (61)

In contrast, assume that the observational set O violates
causal sufficiency, in the sense that O ⊂ V . Again, X and Y
are not d-separated by any subset Z of O∗ = O\{X, Y } if and
only if there is an inducing path (IP) over O between X and Y .

IP (X, Y )⇔ (X ⊥̸⊥ Y | {Z | Z ⊆ O∗})G . (62)
NOTES3:
It is imperative to understand the in-
ducing path from an omniscient per-
spective. Which is, the inducing path
is reasonably a continuous path over
V ∗, whereas only O∗ are "visible"
(observational) as well as that only
O∗ need to meet the characteristics.

The notion of inducing path therein brings a corresponding
concept compared to d-separation: namely the d-connection.
Notice that the notion of d-connection characterizes the general
dependence (e.g. the causal dependence and the spurious de-
pendence raised by latent confounders) associating with both
the graphical and the probabilistic perspectives.

If one refers to the formal definition of inducing path, he or
she would be told that two characteristics3 should be placed on
the members of O∗ along the IP that

• for every member Oi ∈ O∗ has Oi ∈ (An(X) ∪An(Y )),

• for every member Oi ∈ O∗ has Oi = col(Oi).

Where we denote the collider as col(·) and the ancestor as An(·).
From the above two characteristics we get a sense about why
the inducing path has its name. Literally, condition 1) indicates
that the ancestor relations (including the parent relations) are
typically needed to be controlled (namely set into condition) to
helps us obtain possible conditional independence. However,
condition 2) implies that the member we controlled will be ex-
actly the collider, and the result of controlling a collider, is to
"induce" possible spurious dependence that is yielded by the
unmeasured common causes.

The graphical language for the inducing path, usually em-
ployed by constraint-based approaches, lies in developing the
multiple connecting-symbols (Equ(63)) in order to characterize
the uncertain information. Then, the uncertainty of the con-
nections are expected to be narrowed down consequently: NOTES4:

Recall the similar problem of the
"Markovian equivalents" (without
the latent confounder) we discussed
in Section 4.1.

Edge Symbols : {o− o} ≥ {o→,← o} ≥ {↔} ≥ {←,→} . (63)

Consideration of equivalent classes4 becomes inevitable since
the phenomenon, in which a wide spectrum of inducing graphs

36



G′ (the causal diagrams with the edge symbols in Equ(64)) share
the same d-connection, tends to be common. The thing is: how
could we generally summarize graphs from equivalent classes
and depict a noble representative that covers whole uncertainty?

First of all, we need a partially oriented inducing path
graph π over O that has the same vertices V (π) = V (Eq(G′))5 NOTES5:

Here Eq(·) denotes an unity summa-
rizing all the equivalent classes of the
inducing graphs.

and the adjacency connection ADJ(π) = ADJ (Eq(G′)) with the
inducing graphs in Eq(G′). Furthermore, not so strictly speak-
ing, the π over O can be attained by "adding" together the Eq(G′)6:

π :=
∑

G′
i
∈Eq(G′)

Θ(G′
i), (64)

Where we define the graph-aggregating function Θ as a set of NOTES6:
In fact, given these equivalent
classes, it is also important to denote
the "non-collider" (Z) in π as

X o− o Z o− o Y
after the additive procedure. I skip
to describe this as it involves slightly
overwhelmed details in constraint-
based causal discovery.

constraint rules listed by Causation, Prediction, and Search. In
this paper, I basically illustrate them as the following:

Θ :


↔ := (→) + (←) ,

o→ := (→) + (↔),
o− o := (→) + (←) + (↔).

(65)

Keeping this in mind, in terms of causal discovery algorithms7,
I attempt to synchronize the following introduction with and
without causal sufficiency. What I hope is to offer a dynamic REFERENCE7:

Popular constraint-based causal dis-
covery algorithms introduced by the
book Causation, Prediction, and
Search, Chapter 5 and 6.
- SGS: the Spites-Glymour-Scheines
algorithm;
- PC: the Peter-Clark algorithm
(Spites Peter, Glymour Clark);
- CI: the causal inference algorithm
(Verma, Pearl);
- FCI: the fast causal inference algo-
rithm (Glymour Clark)

picture for algorithms’ developments where my audience could
pinpoint to the primary idea amid we tease out these compara-
ble and improved versions.

When causal sufficiency comes along, the SGS algorithm
starts from a complete graph and further prunes it (e.g. namely
to "cut off" the (unnecessary) edge between any of the two vari-
ables X and Y in the graph) based on conditional independence
implied by data.

Cut(X, Y ) ⇔ X ⊥⊥ Y | V ∗. (66)

The crucial point where the PC algorithm refines the original
SGS algorithm lies in narrowing down the conditional set V ∗

(required by conditional independence test) via replacing it as
the subset Sub(·) of the adjacent variables Ad(·) of X and Y .

Cut(X, Y ) ⇔ X ⊥⊥ Y | Sub(Ad(X, Y )). (67)

The certain (minimal) subset resulting into the conditional in-
dependence serves as the "approximation" of the d-separation
set D-Sep(X, Y ) between X and Y . Aside from cutting off edges
according to the independence, the algorithm need to orient the
edges base on dependence. Technically, given any of the triple
Tr(·) of X, Z, Y over V , a "V-structure" X → Z ← Y can be ori-
ented (denoted as Ori(X, Z, Y )) if:

∀ (X, Z, Y ) ⊆ Tr(V )⇒ (Ori(X, Z, Y ) ⇔ Z /∈ D-Sep(X, Y )). (68)

Leveraging the D-Sep(X, Y ) searched by adjacent variables, from
a Bayesian perspective, equally indicates the swift search for
the Markov blanket Mb(X) (e.g. parents Pa(X) of X):

X ⊥⊥ V \Ad(X) | Ad(X) ⇒ X ⊥⊥ V \Mb(X) | Mb(X) . (69)
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In the presence of latent confounders, however, the "Bayesian"
equality no longer holds and we need additional conditional
variables acting as the possible-D-separation set. The point is,
instead of searching for all possible candidates, we could think
of it in the opposite way: excluding the impossible candidates
— based on the inducing path. Notice that this is exactly the
core idea behind the CI and FCI algorithm.

Cut(X, Y ) ⇔ X ⊥⊥ Y | Possible-D-Sep(X, Y ). (70)

As for the orientation over the partial inducing path graph, we NOTES8:
Notice that the inducing path is
a theoretically established concept.
The algorithm does not know what
is called the inducing path; it utilizes
the property of the inducing path by
defining and searching for the "dis-
criminating path".
Similarly, the algorithm does not
know what is called the D-separation
set yielded by the Causal Markov
condition. Instead, the algorithm
approaches the relation of condi-
tional independence by searching the
"variable adjacent set" (in order to
approximate the d-separation set).

have slightly learned the sophisticated "connection symbols"
shown in Equ(63). Quite similar to the theoretical concept8 of
the inducing path, we also have an intermediate concept emerg-
ing amid the practical execution of algorithms named definite
discriminating path.

Notice that a definite discriminating path for M (Disc(X, Y |M))
refers to an inducing path (IP (X, Y )) between X and Y con-
taining the "additionally discriminative" variable M . In order
words, we are not sure whether the variable M will satisfy the
two characteristics (discussed in a few previous paragraphs) of
the inducing path (IP (X, Y )). Given the variables U consisting
of such an "extensive" inducing path, namely

∃ M ∈ V ∗, U ⊆ Disc(X, Y | M), (71)

it implies that, roughly speaking, orienting the V-structure should
be confined to a relatively small range of the variables U when
it comes to the existence of latent confounders. Analogically to
Equ(68), orienting an partial inducing path graph implies that

∀ (P, M, R) ⊆ Tr(U)⇒ (Ori(P, M, R)⇔M /∈ D-Sep(X, Y )). (72)

When all of the observed variables O are susceptible to latent
confounders L = V \ O, then none of conditional independence
relation will exist:

∀X, Y (X ⊥̸⊥ Y | {Z | Z ⊆ O∗})G . (73)

In this case, as we said the "vertical perspective", difference
is mathematically about the tiny shifting of causal variables
based on investigators’ interest and access. It could have for-
mally named the full latent variables model. Particularly, it
consists of two parts: (linear) structure equations model and
measurement model. For the latter one, it conjures up the
measurement purity assumption we have seen in the tutorial
part. In terminology, we define it as the latent-measured purity
in the following equation, with the symbol O(L) characterizing
the observed variables that are L’s child.

∀Li, Lj ∈ L, O(i) := O(Li) ⇒ O(i) ∩O(j) = ∅. (74)

With the assumptions of linearity and purity and without
being in form of conditional independence constraints, vanish-
ing tetrad difference or tetrad constraints is another type of
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constraints about a handful of equations characterizing the cor-
relation among measured variables O = {X1, X2, X3, X4}.

ρ13ρ24 − ρ14ρ23 = 0,

ρ14ρ23 − ρ12ρ23 = 0,

ρ12ρ34 − ρ13ρ24 = 0.

(75)

The set of equation yields ρ13ρ24 = ρ14ρ23 = ρ12ρ34, which is the
expression of available tetrad constraints leading to the identi-
fication of a full latent variables model. Meanwhile, the interior
mathematical details are straightforward:

ρ13ρ24 = σ13σ24

σ1σ2σ3σ4
, ρ14ρ23 = σ14σ23

σ1σ2σ3σ4
. (76)

Working through the calculation, such as σ13 = E[(x1−E(x1))(x3−
E(x3))], could be done by replacing the variables with their gen-
erating structural equation, according to the structure of the
full latent variables model.

σ13 = E{[(λxξ + εx)−E(λxξ + εx)][(λyξ + εy)−E(λyξ + εy)]}. (77)

Based on linearity and purity, we reduce and uncover that the
constraint among measurement variables is fundamentally equal
to a mapping from the statistic variance of latent variables.

σ13 = λxλyσ2
ξ + (σεxεy

+ σξεx
+ σξεy

) = λxλyσ2
ξ . (78)

Furthermore, for algorithms that can effectively search vanish-
ing tetrad difference, it requires elaborated concepts such as
trek and choke point that are defined to establish the tetrad
representation theorem. Readers who feel interested in more
details could refer to Causation, Prediction, and Search.
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Causal Books References

Reminder : "Partial ideas from celebrated causal books (Causation, Prediction, and
Search; Causality; Elements of Causal Inference; The Book of WHY ) that are beneficial to
interpret causation are woven into the paper."

Causation, Prediction, and Search

• Chapter-5. Discovery Algorithms for Causality Sufficient Structures

– 5.4 New Algorithms

• Chapter-6. Discovery Algorithms without Causal Sufficiency

– 6.3 Mistakes
– 6.4 Inducing Path
– 6.5 Inducing Path Graphs
– 6.6 Partially Oriented Inducing Path Graphs
– 6.7 Algorithms for Causal Inference with Latent Common Causes
– 6.9 Non-Independence Constraints
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